【题目】已知定义在R上的函数f(x)满足:y=f(x﹣1)的图象关于(1,0)点对称,且当x≥0时恒有f(x﹣ )=f(x+ ),当x∈[0,2)时,f(x)=ex﹣1,则f(2017)+f(﹣2016)=( )
A.1﹣e
B.﹣1﹣e
C.e﹣1
D.e+1
科目:高中数学 来源: 题型:
【题目】已知圆C的方程:x2+y2﹣2x﹣4y+m=0
(1)求m的取值范围;
(2)圆C与直线x+2y﹣4=0相交于M,N两点,且OM⊥ON(O为坐标原点),求m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知动圆S过定点P(﹣2 ),且与定圆Q:(x﹣2 )2+y2=36相切,记动圆圆心S的轨迹为曲线C.
(1)求曲线C的方程;
(2)设曲线C与x轴,y轴的正半轴分别相交于A,B两点,点M,N为椭圆C上相异的两点,其中点M在第一象限,且直线AM与直线BN的斜率互为相反数,试判断直线MN的斜率是否为定值.如果是定值,求出这个值;如果不是定值,说明理由;
(3)在(2)条件下,求四边形AMBN面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)= ﹣k ln x,k>0.
(1)求f(x)的单调区间和极值;
(2)证明:若f(x)存在零点,则f(x)在区间(1, ]上仅有一个零点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Asin(ωx+φ)(其中x∈R,A>0,ω>0, )的部分图象如图所示
(Ⅰ)求A,ω,φ的值;
(Ⅱ)求f(x)的单调增区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列五个命题:
①过点(-1,2)的直线方程一定可以表示为y-2=k(x+1)的形式(k∈R);
②过点(-1,2)且在x轴、y轴截距相等的直线方程是x+y-1=0;
③过点M(-1,2)且与直线l:Ax+By+C=0(AB≠0)垂直的直线方程是B(x+1)+A(y-2)=0;
④设点M(-1,2)不在直线l:Ax+By+C=0(AB≠0)上,则过点M且与l平行的直线方程是A(x+1)+B(y-2)=0;
⑤点P(-1,2)到直线ax+y+a2+a=0的距离不小于2.
以上命题中,正确的序号是________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com