精英家教网 > 高中数学 > 题目详情
f(x)=(0<x<1).

(1)设a1=1,an+1=f-1(an)(nN*),求an的通项公式;

(2)在(1)的条件下,又设b1=,bn+1=(1+bn)2f-1(bn)(nN*),证明当n≥2时,有1<+ +…+<2.

(1)解:y=,由x∈(0,1),得y∈(0,+∞)且x=,

f-1(x)=(x>0).                                                                                             ?

an+1=,=+1,?

=1+(n-1)×1=n,∴an=.                                                                                  ?

(2)证明:由bn+1=(1+bn)2=bn+bn2bn,?

bn为递增数列,bn>0,?

==-,由b1=,得b2=.?                                                ?

==-.                                                                              ?

n≥2时,++…++=+>1.           ?

++…+=()+()?+…+(-)?

=-?

=2-<2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a(x-1)2+1
bx+c-b
(a,b,c∈N)的图象按向量
e
=(-1,0)
平移后得到的图象关于原点对称,且f(2)=2,f(3)<3.
(1)求a,b,c的值;
(2)设0<|x|<1,0<|t|≤1.求证:|t+x|+|t-x|<|f(tx+1)|
(3)定义函数G(x)=f(x)-x+2.当n为正整数时,求证:G(4)×G(6)×G(8)×…×G(2n)>
2n+1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在区间(1,+∞)上的函数,其导函数为f′(x).如果存在实数a和函数h(x),其中h(x)对任意的x∈(1,+∞)都有h(x)>0,使得f′(x)=h(x)(x2-ax+1),则称函数f(x)具有性质P(a),设函数f(x)=lnx+
b+2x+1
(x>1)
,其中b为实数.
(1)①求证:函数f(x)具有性质P(b);
②求函数f(x)的单调区间.
(2)已知函数g(x)具有性质P(2),给定x1,x2∈(1,+∞),x1<x2,设m为实数,α=mx1+(1-m)x2,β=(1-m)x1+mx2,α>1,β>1,若|g(α)-g(β)|<|g(x1)-g(x2)|,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于三次函数f(x)=ax3+bx2+cx+d(a≠0)有如下定义:
定义(1):设f″(x)是函数y=f(x)的导数f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”;
定义(2):设x0为常数,若定义在R上的函数y=f(x)对于定义域内的一切实数x,都有f(x0+x)+f(x0-x)=2f(x0)成立,则函数y=f(x)的图象关于点(x0,f(x0))对称.
己知f(x)=x3-3x2+ax+2在x=-1处取得极大值.请回答下列问题:
(1)当x∈[0,4]时,求f(x)的最小值和最大值;
(2)求函数f(x)的“拐点”A的坐标,并检验函数f(x)的图象是否关于“拐点”A对称.

查看答案和解析>>

科目:高中数学 来源: 题型:

(文)已知R为实数集,Q为有理数集.设函数f(x)=
0,(x∈CRQ)
1,(x∈Q).
则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=ax2+bx+c(a,b,c为实常数),f(0)=1,g(x)=
f(x),x<0
-f(x),x>0

(Ⅰ)若f(-2)=0,且对任意实数x均有f(x)≥0成立,求g(x)的表达式;
(Ⅱ)在(Ⅰ)的条件下,若h(x)=f(x)+kx不是[-2,2]上的单调函数,求实数k的取值范围;
(Ⅲ)设a>0,m>0,n<0且m+n>0,当f(x)为偶函数时,求证:g(m)+g(n)<0.

查看答案和解析>>

同步练习册答案