精英家教网 > 高中数学 > 题目详情

 (本小题满分12分)已知中心在原点的椭圆的离心率,一条准线方程为

(1)求椭圆的标准方程;

(2)若以>0)为斜率的直线与椭圆相交于两个不同的点,且线段的垂直平分线与两坐标轴围成的三角形的面积为,求的取值范围。

 

【答案】

(1);(2)

【解析】

试题分析:(1)因为椭圆的离心率,一条准线方程为.应用待定系数求得椭圆的标准方程.

(2)假设直线)方程.其中有两个参数.联立椭圆方程.消去即可得一个关于的二次方程.首先由二次方程根的判别式大于零可得一个关于的不等的关系式.其次由韦达定理写出两个根与的关系式.写出线段的中垂线的方程.从而可得中垂线与两坐标轴的截距.再写出垂直平分线与两坐标轴围成的三角形的面积,依题意即可得一个关于的等式.由这两步消去.即可得的取值范围.

试题解析:(1)由已知设椭圆的标准方程为,  >0)

由题设得解得 ,

所以椭圆的标准方程为       4分

(2)由题意设直线的方程为   (>0)

 消去得  ①

  则

线段的中点坐标满足  

  

从而线段的垂直平分线的方程为

此直线与轴,轴的交点坐标分别为

由题设可得 整理得  (>0)  ②

由题意在①中有 >0  整理得>0

将②代入得  >0 (>0),

 即 >0, <0,即<0

<4    所以的取值范围是。     12分

考点:1.待定系数求椭圆的方程.2.直线与椭圆的位置关系.3.线段的垂直平分线.4.方程与不等式转化的思想.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案