精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=$\frac{1}{3}$sin(ωx+$\frac{π}{3}$)(ω>0)的最小正周期为π,则f(x)的图象(  )
A.关于直线x=$\frac{π}{4}$对称B.关于点($\frac{π}{4}$,0)对称
C.关于直线x=$\frac{π}{3}$对称D.关于点($\frac{π}{3}$,0)对称

分析 由调件利用正弦函数的周期性求得ω的值,可得它的解析式,再利用它的图象的对称性,得出结论.

解答 解:函数f(x)=$\frac{1}{3}$sin(ωx+$\frac{π}{3}$)(ω>0)的最小正周期为$\frac{2π}{ω}$=π,∴ω=2,f(x)=$\frac{1}{3}$sin(2x+$\frac{π}{3}$).
令2x+$\frac{π}{3}$=kπ+$\frac{π}{2}$,求得x=$\frac{kπ}{2}$+$\frac{π}{12}$,故函数f(x)的图象的对称轴方程为 x=$\frac{kπ}{2}$+$\frac{π}{12}$,k∈Z.
令2x+$\frac{π}{3}$=kπ,求得x=$\frac{kπ}{2}$-$\frac{π}{6}$,故函数f(x)的图象的对称中心为($\frac{kπ}{2}$-$\frac{π}{6}$,0),k∈Z,
故选:D.

点评 本题主要考查正弦函数的周期性和它的图象的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.在△ABC中,a=1,b=6,C=60°,则三角形的面积为(  )
A.$\frac{3}{2}$B.$\frac{3\sqrt{3}}{2}$C.3$\sqrt{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知集合A={x|1<x-1≤4},B=(-∞,a),若A⊆B,则实数a的取值范围是(5,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.定义域为R的偶函数f(x)的最小正周期是π,当x∈[0,$\frac{π}{2}$]时,f(x)=sinx.
(1)求x∈[$\frac{π}{2}$,π]时,f(x)的解析式;
(2)画出函数f(x)在[-π,π]上的简图.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知A,B,C,D是空间不共面四点.且满足AB=CD,AC=BD,AD=BC,则△BCD是(  )
A.钝角三角形B.直角三角形C.锐角三角形D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A、B、C的对边分别为a、b、c,且a、b、c组成一个公差为d=-1的等差数列,若A=2C,试求△ABC的三边a,b,c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=sinωx•cosωx的最小正周期为2,则ω=$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1的离心率e=$\frac{\sqrt{5}}{2}$,点A(0,1)与双曲线上的点的最小距离是$\frac{2}{5}$$\sqrt{30}$,求双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数y=2sin(ωx+φ)在区间[0,$\frac{4}{3}$π]上单调递增,且f($\frac{π}{3}$)=0,f($\frac{4}{3}$π)=2,则函数的最小正周期为(  )
A.$\frac{π}{2}$B.πC.D.

查看答案和解析>>

同步练习册答案