精英家教网 > 高中数学 > 题目详情

已知函数数学公式的最小正周期为π,且在数学公式处取得最大值.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)在△ABC中,角A,B,C的对边分别为a,b,c,若数学公式,且数学公式,求角B.

解:(Ⅰ)∵f(x)的最小正周期为π,
=π,即ω=2,
∴f(x)=2sin(2x+φ),
又点(,2)在函数图象上,得sin(+φ)=1,
∵|φ|<,∴φ=
则f(x)的解析式为f(x)=2sin(2x+);
(Ⅱ)由sinA+sinC=f(-),得sinA+sinC=sinB,
由正弦定理得:a+c=b,又ac=b2
由余弦定理得:cosB====
∵0<B<π,∴B=
分析:(Ⅰ)由已知函数的周期,利用三角函数的周期公式求出ω的值,再由函数在处取得最大值,得到点(,2)在函数图象上,将此点代入函数解析式中确定出φ的值,即可确定出函数f(x)的解析式;
(Ⅱ)利用第一问确定出的函数解析式化简已知的等式sinA+sinC=f(-),再利用正弦定理变形,表示出a+c,利用余弦定理表示出cosB,将表示出的a+c及ac代入,化简后得出cosB的值,由B为三角形的内角,利用特殊角的三角函数值即可求出B的度数.
点评:此题考查了正弦、余弦定理,三角函数y=Asin(ωx+φ)解析式的确定,以及特殊角的三角函数值,熟练掌握定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源:2015届浙江省高一下学期期中考试数学试卷(解析版) 题型:选择题

已知函数的最小正周期为,将其图象向左平移个单位长度,所得图象关于轴对称,则的一个可能值是                                (    )

A.              B.             C.              D.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省淄博市高三(上)期末数学试卷(理科)(解析版) 题型:解答题

已知函数的最小正周期为2π.
(I)求函数f(x)的对称轴方程;
(II)若,求的值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖北省武汉市黄陂一中高三数学滚动检测试卷(七)(解析版) 题型:解答题

已知函数的最小正周期为π,其图象关于直线对称.
(1)求函数f(x)在上的单调递增区间;
(2)若关于x的方程1-f(x)=m在上只有一个实数解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:哈三中2011届度上学期高三学年9月份月考数学试题(文史类) 题型:解答题

(本小题满分12分)已知函数的最小正周期为.

(Ⅰ)求的值;

(Ⅱ)求函数f(x)的单调递增区间

 

查看答案和解析>>

科目:高中数学 来源:2010年吉林省高一下学期期末考试数学卷 题型:解答题

(本题满分12分)

已知函数的最小正周期为

(Ⅰ)求的值;            

(Ⅱ)若不等式上恒成立,求实数的取值范围.

 

查看答案和解析>>

同步练习册答案