精英家教网 > 高中数学 > 题目详情
12.已知定义在R上的奇函数f(x),当x≥0时,f(x)=x3-2x2+3x,则x<0时,f(x)=x3+2x2+3x.

分析 要求x<0时的函数解析式,先设x<0,则-x>0,-x就满足函数解析式f(x)=x3-2x2+3x,用-x代替x,可得,x<0时,f(-x)的表达式,再根据函数的奇偶性,求出此时的f(x)即可.

解答 解:设x<0,则-x>0,
∵当x≥0时,f(x)=x3-2x2+3x,∴f(-x)=-x3-2x2-3x,
∵f(x)是定义在R上的奇函数,∴f(x)=-f(-x)=x3+2x2+3x,
∴当x<0时,f(x)=x3+2x2+3x.
故答案为:x3+2x2+3x.

点评 本题主要考查根据函数的奇偶性求函数的解析式,关键是先求x<0时f(-x)的表达式,再根据奇偶性求f(x).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.空间四边形ABCD中,对角线AC,BD与各边长均为1,O为△BCD的重心,M是AC的中点,E是AO的中点,求异面直线OM与BE所成的角为$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}是递增的等比数列,且a3+a6=9,a2a7=8.
(1)求数列{an}的通项公式;
(2)设Sn为数列{an}的前n项和,${b_n}=\frac{{{a_{n+1}}}}{{{S_n}{S_{n+1}}}}$,求数列{bn}的前n项和Tn
(3)对于(2)中的Tn,若Tn<m-2014对一切n∈N*成立,求最小正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=CB=1,BA=2,AB∥DC,∠BCD=90°,点E、F、G分别是线段AB、PC、DE的中点.
(Ⅰ)求证:FG∥平面PAB;
(Ⅱ)求证:DF⊥平面PBC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.为了得到函数y=$\frac{1}{2}$cos(2x+$\frac{π}{3}$)的图象,可以把函数y=$\frac{1}{2}$cos2x的图象上所有的点(  )
A.向右平移$\frac{π}{3}$个单位B.向右平移$\frac{π}{6}$个单位
C.向左平移$\frac{π}{3}$个单位D.向左平移$\frac{π}{6}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某种产品的广告费支出x与销售额(单位:百万元)之间有如下对应数据:
x24568
y3040506070
如果y与x之间具有线性相关关系.
(1)求这些数据的线性回归方程;
(2)预测当广告费支出为9百万元时的销售额.
附:线性回归方程$\widehaty=\widehatbx+\widehata$中,$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若直线ax+by=4与不等式组$\left\{\begin{array}{l}2x-5y+8≥0\\ 2x+y-4≤0\\ x+2y+4≥0\end{array}\right.$表示的平面区域无公共点,则a+b的取值范围是(-3,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,a,b,c分别是角A、B、C的对边,且$\sqrt{3}$acosB+bsinA=0.
(I)求角B的大小;
(Ⅱ)若△ABC的面积S=$\sqrt{3}$,a=1,求b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数y=3+loga(2x+3)的图象必经过定点P的坐标为(  )
A.(-1,3)B.(-1,4)C.(0,1)D.(2,2)

查看答案和解析>>

同步练习册答案