精英家教网 > 高中数学 > 题目详情

【题目】已知函数 f(x)=asinx﹣bcosx(a,b为常数,a≠0,x∈R)在x= 处取得最小值,则函数g(x)=f( ﹣x)是( )
A.偶函数且它的图象关于点 (π,0)对称
B.奇函数且它的图象关于点 (π,0)对称
C.奇函数且它的图象关于点( . ,0)对称
D.偶函数且它的图象关于点( ,0)对称

【答案】B
【解析】解:∵函数 f(x)=asinx﹣bcosx (a,b为常数,a≠0,x∈R)在x= 处取得最小值,最小正周期为2

则f( ﹣x)=f(x﹣ ),则函数g(x)=f( ﹣x)=f(x﹣ ).

故g(x)可以看成把f(x)的图象向右平移 个单位得到的,即x= 是g(x)的图象的一个对称轴.

由于g( )=f( )对应g(x)的最小值,而对称轴和对称中心最少相差 T= ,故(0,0)和(π,0)是g(x)的对称中心,

故答案为:B.

根据题意可得g(x)=f(-x)=f(x-),故g(x)可以看成把f(x)的图像向右平移个单位得到的.再根据对称轴和对称中心至少相差,得出结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】将函数f(x)=cos2x﹣sin2x的图象向左平移 个单位后得到函数F(x)的图象,则下列说法正确的是(
A.函数F(x)是奇函数,最小值是
B.函数F(x)是偶函数,最小值是
C.函数F(x)是奇函数,最小值是﹣2
D.函数F(x)是偶函数,最小值是﹣2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若定义域为R的奇函数f(x)满足f(1+x)=﹣f(x),则下列结论: ①f(x)的图象关于点 对称;
②f(x)的图象关于直线 对称;
③f(x)是周期函数,且2个它的一个周期;
④f(x)在区间(﹣1,1)上是单调函数.
其中正确结论的序号是 . (填上你认为所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在锐角△ABC中,a,b,c为角A,B,C所对的边,且(b﹣2c)cosA=a﹣2acos2
(1)求角A的值;
(2)若a= ,则求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在实数集R上的奇函数f(x)有最小正周期2,且当x∈(0,1)时,
(Ⅰ)求函数f(x)在(-1,1)上的解析式;
(Ⅱ)判断f(x)在(0,1)上的单调性;
(Ⅲ)当λ取何值时,方程f(x)=λ在(-1,1)上有实数解?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个容量为M的样本数据,其频率分布表如下

(1)计算a,b的值;

(2)画出频率分布直方图;

(3)用频率分布直方图,求出总体的众数及平均数的估计值.

频率分布表

分组

频数

频率

频率/组距

(10,20]

2

0.10

0.010

(20,30]

3

0.15

0.015

(30,40]

4

0.20

0.020

(40,50]

a

b

0.025

(50,60]

4

0.20

0.020

(60, 70]

2

0.10

0.010

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正四面体P﹣ABC中,点M是棱PC的中点,点N是线段AB上一动点,且 ,设异面直线 NM 与 AC 所成角为α,当 时,则cosα的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=ln(x2﹣x)的定义域为( )
A.(0,1)
B.[0,1]
C.(﹣∞,0)∪(1,+∞)
D.(﹣∞,0]∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合M={x|x<2},集合N={x|0<x<1},则下列关系中正确的是(
A.M∪N=R
B.M∪RN=R
C.N∪RM=R
D.M∩N=M

查看答案和解析>>

同步练习册答案