【题目】如图所示,在四棱锥中, 平面是的中点, 是上的点且为边上的高.
(1)证明: 平面;
(2)若,求三棱锥的体积;
(3)在线段上是否存在这样一点,使得平面?若存在,说出点的位置.
【答案】(1)证明见解析;(2);(3)中点.
【解析】试题分析:(1)平面, 为中边上的高, ,由线面垂直的判定定理能够证明平面;(2)连接,取中点,连接是中点, , 平面, 平面,由根据棱锥的体积公式能够求出三棱锥的体积;(3)取的中点,连接,则因为是的中点,先证明,再证明以平面,可得面,即 与 重合时符合题意.
试题解析:(1),又平面,平面,
又,平面
(2)是的中点,到平面的距离等于点到平面距离的一半,即=,又因为,所以三棱锥;
(3)取的中点,连接、,则因为是的中点,所以,且,又因为且,所以且,所以四边形是平行四边形,所以,由(1)知平面,所以,又因为,所以,因为,所以平面,因为ED//DQ,所以面.M为PB中点.
【方法点晴】本题主要考查线面垂直的判定定理及棱锥的体积公式,属于难题.解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理;证明直线和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推论;(3)利用面面平行的性质;(4)利用面面垂直的性质,当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.
科目:高中数学 来源: 题型:
【题目】某厂最近十年生产总量逐年上升,如表是部分统计数据:
年份 | 2008 | 2010 | 2012 | 2014 | 2016 |
生产总量(万吨) |
(Ⅰ)利用所给数据求年生产总量与年份之间的回归直线方程;
(Ⅱ)利用(Ⅰ)中所求出的直线方程预测该厂2018年生产总量.
(回归直线的方程: ,其中, )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,E为BB1中点.
(1)证明:AC⊥D1E;
(2)求DE与平面AD1E所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某出租车公司响应国家节能减排的号召,已陆续购买了140辆纯电动汽车作为运营车辆,目前我国主流纯电动汽车按续航里程数.(单位:公里)分为3类,即类:,类:, 类:,该公司对这140辆车的行驶总里程进行统计,结果如下表:
类型 | 类 | 类 | 类 |
已行驶总里程不超过10万公里的车辆数 | 10 | 40 | 30 |
已行驶总里程超过10万公里的车辆数 | 20 | 20 | 20 |
(1)从这140辆汽车中任取一辆,求该车行驶总里程超过10万公里的概率;
(2)公司为了了解这些车的工作状况,决定抽取了14辆车进行车况分析,按表中描述的六种情况进行分层抽样,设从类车中抽取了辆车.
①求的值;
②如果从这辆车中随机选取两辆车,求恰有一辆车行驶总里程超过10万公里的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}的前n项和为Sn , 令Tn= ,称Tn为数列a1 , a2 , …,an的“理想数”,已知数列a1 , a2 , …,a502的“理想数”为2012,那么数列2,a1 , a2 , …,a502的“理想数”为( )
A.2010
B.2011
C.2012
D.2013
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在等比数列{an}中,公比q≠1,等差数列{bn}满足b1=a1=3,b4=a2 , b13=a3 .
(1)求数列{an}与{bn}的通项公式;
(2)记cn=(﹣1)nbn+an , 求数列{cn}的前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动点到定点和定直线的距离之比为,设动点的轨迹为曲线.
(1)求曲线的方程;
(2)过点作斜率不为0的任意一条直线与曲线交于两点,试问在轴上是否存在一点(与点不重合),使得,若存在,求出点坐标;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com