精英家教网 > 高中数学 > 题目详情

如图a,在直角梯形ABCD中,AB⊥AD,AD∥BC,F为AD的中点,E在BC上,且EF∥AB.已知AB=AD=CE=2,沿线EF把四边形CDFE折起如图b,使平面CDFE⊥平面ABEF.

(1)求证:AB⊥平面BCE;
(2)求三棱锥C ­ADE体积.

(1)见解析  (2) 

解析(1)证明:在题图a中,EF∥AB,AB⊥AD,
∴EF⊥AD,在题图b中,CE⊥EF,又平面CDFE⊥平面ABEF,且平面CDFE∩平面ABEF=EF,
CE⊥平面ABEF,AB?平面ABEF,∴CE⊥AB,又∵AB⊥BE,BE∩CE=E,∴AB⊥平面BCE;
(2)解:∵平面CDFE⊥平面ABEF,且平面CDFE∩平面ABEF=EF,AF⊥FE,AF?平面ABEF,∴AF⊥平面CDEF,∴AF为三棱锥A ­CDE的高,且AF=1,又∵AB=CE=2,∴SCDE×2×2=2,
∴VC ­ADE·SCDE·AF=×2×1=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图甲,是边长为6的等边三角形,分别为靠近的三等分点,点为边边的中点,线段交线段于点.将沿翻折,使平面平面,连接,形成如图乙所示的几何体.

(1)求证:平面
(2)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图(1)所示,⊙O的直径AB=4,点C,D为⊙O上两点,且∠CAB=45°,∠DAB=60°,F为的中点.沿直径AB折起,使两个半圆所在平面互相垂直(如图(2)所示).
 
(1)求证:OF∥平面ACD;
(2)在上是否存在点G,使得FG∥平面ACD?若存在,试指出点G的位置,并求点G到平面ACD的距离;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,都是以为斜边的等腰直角三角形,分别是的中点.

(1)证明:平面//平面;
(2)证明:
(3)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱ABCA1B1C1中,CACBABAA1,∠BAA1=60°.

(1)证明:ABA1C
(2)若ABCB=2,A1C,求三棱柱ABCA1B1C1的体积;
(3)若平面ABC⊥平面AA1B1BABCB=2,求直线A1C与平面BB1C1C所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱ABC-A1B1C1中,C1C⊥底面ABC,AC=BC=CC1=2,AC⊥BC,点D是AB的中点.

(1)求证:AC1∥平面CDB1
(2)求三棱锥D-B1C1C的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

请您设计一个帐篷,它下部的形状是高为1m正六棱柱,上部的形状是侧棱长为3m的正六棱锥(如图所示)。试问当帐篷的顶点O到底面中心O1的距离为多少时,帐篷的体积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,底面是菱形,的中点,点在侧棱上.

(1)求证:⊥平面
(2)若的中点,求证://平面
(3)若,试求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE = x,G是BC的中点。沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图) .

(1) 当x=2时,求证:BD⊥EG ;
(2) 若以F、B、C、D为顶点的三棱锥的体积记为f(x),求f(x)的最大值;
(3) 当f(x)取得最大值时,求二面角D-BF-C的余弦值.

查看答案和解析>>

同步练习册答案