【题目】已知直线上有一个动点,过点作直线垂直于轴,动点在上,且满足(为坐标原点),记点的轨迹为.
(I)求曲线的方程;
(II)若直线是曲线的一条切线,当点到直线的距离最短时,求直线的方程.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中, 底面,底面是直角梯形, .
(1)在上确定一点,使得平面,并求的值;
(2)在(1)条件下,求平面与平面所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
将圆上每一点的纵坐标保持不变,横坐标变为原来的2倍得到曲线.
(1)写出曲线的参数方程;
(2)以坐标原点为极点,轴正半轴为极轴坐标建立极坐标系,已知直线的极坐标方程为,若分别为曲线和直线上的一点,求的最近距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校为测评班级学生对任课教师的满意度,采用“100分制”打分的方式来计分,规定满意度不低于98分,则评价该教师为“优秀”,现从某班学生中随机抽取10名,以下茎叶图记录了他们对某教师的满意度分数(以十位数字为茎,个位数字为叶);
(1)指出这组数据的众数和中位数;
(2)求从这10人中随机选取3人,至多有1人评价该教师是“优秀”的概率;
(3)以这10人的样本数据来估计整个班级的总体数据,若从该班任选3人,记表示抽到评价该教师为“优秀”的人数,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某省两相近重要城市之间人员交流频繁,为了缓解交通压力,特修一条专用铁路,用一列火车作为交通车,已知该车每次拖4节车厢,一日能来回16次,如果每次拖7节车厢,则每日能来回10次.
(1)若每日来回的次数是车头每次拖挂车厢节数的一次函数,求此一次函数解析式:
(2)在(1)的条件下,每节车厢能载乘客110人.问这列火车每天来回多少次才能使运营人数最多?并求出每天最多运营人数。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,二次函数,关于的不等式的解集为,其中为非零常数,设.
(1)求的值;
(2)若存在一条与轴垂直的直线和函数的图象相切,且切点的横坐标满足,求实数的取值范围;
(3)当实数取何值时,函数存在极值?并求出相应的极值点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com