【题目】在四棱锥P–ABCD中,ABCD是矩形,PA=AB,E为PB的中点.
(1)若过C,D,E的平面交PA于点F,求证:F为PA的中点;
(2)若平面PAB⊥平面PBC,求证:BC⊥PA.
【答案】(1)证明见解析(2)证明见解析
【解析】
(1)推导出,从而平面PAB,进而CD∥EF,AB∥EF,再由E为PB的中点,能证明F为PA的中点;(2)推导出AE⊥PB,从而AE⊥平面PBC,AE⊥BC,由ABCD是矩形,得AB⊥BC,从而BC⊥平面PAB,由此能证明BC⊥PA.
(1)因为ABCD是矩形,
所以,CD∥AB,又AB平面PAB,CD平面PAB,
所以CD∥平面PAB,
又CD平面CDEF,平面CDEF∩平面PAB=EF,
所以CD∥EF,
所以AB∥EF,又在△PAB中,E为PB的中点,
所以F为PA的中点.
(2)因为PA=AB,E为PB的中点,所以AE⊥PB,
AE平面PAB又平面PAB⊥平面PBC,平面PAB∩平面PBC=PB,
所以AE⊥平面PBC,
BC平面PBC,所以AE⊥BC,又ABCD是矩形,
所以AB⊥BC,AE∩AB=A,AB,AE平面PAB,
所以,BC⊥平面PAB,
PA平面PAB,所以BC⊥PA.
科目:高中数学 来源: 题型:
【题目】某电视厂家准备在五一举行促销活动,现在根据近七年的广告费与销售量的数据确定此次广告费支出.广告费支出x(万元)和销售量y(万台)的数据如下:
(1)若用线性回归模型拟合y与x的关系,求出y关于x的线性回归方程(其中;参考方程:回归直线,)
(2)若用模型拟合y与x的关系,可得回归方程,经计算线性回归模型和该模型的分别约为0.75和0.88,请用说明选择哪个回归模型更好;
(3)已知利润z与x,y的关系为z=200y﹣x.根据(2)的结果回答:当广告费x=20时,销售量及利润的预报值是多少?(精确到0.01)参考数据:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过抛物线:的焦点做直线交抛物线于,两点,的最小值为2.
(1)求抛物线的标准方程;
(2)过,分别做抛物线的切线,两切线交于点,且直线,分别与轴交于点,,记和的面积分别为和,求证:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,O为坐标原点,A,B,C三点满足。
(1)求证:A,B,C三点共线;
(2)若A(1,cosx),B(1+sinx,cosx),且x∈[0, ],函数f(x)=(2m+)||+m2的最小值为5,求实数m的值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着社会的发展,终身学习成为必要,工人知识要更新,学习培训必不可少,现某工厂有工人1000名,其中250名工人参加短期培训(称为类工人),另外750名工人参加过长期培训(称为类工人),从该工厂的工人中共抽查了100名工人,调查他们的生产能力(此处生产能力指一天加工的零件数)得到类工人生产能力的茎叶图(左图),类工人生产能力的频率分布直方图(右图).
(1)问类、类工人各抽查了多少工人,并求出直方图中的;
(2)求类工人生产能力的中位数,并估计类工人生产能力的平均数(同一组中的数据用该组区间的中点值作代表);
(3)若规定生产能力在内为能力优秀,由以上统计数据在答题卡上完成下面的列联表,并判断是否可以在犯错误概率不超过0.1%的前提下,认为生产能力与培训时间长短有关.能力与培训时间列联表
短期培训 | 长期培训 | 合计 | |
能力优秀 | |||
能力不优秀 | |||
合计 |
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从甲、乙两种棉花中各抽测了25根棉花的纤维长度(单位: ) 组成一个样本,且将纤维长度超过315的棉花定为一级棉花.设计了如下茎叶图:
(1)根据以上茎叶图,对甲、乙两种棉花的纤维长度作比较,写出两个统计结论(不必计算);
(2)从样本中随机抽取甲、乙两种棉花各2根,求其中恰有3根一级棉花的概率;
(3)用样本估计总体,将样本频率视为概率,现从甲、乙两种棉花中各随机抽取1根,求其中一级棉花根数X的分布列及数学期望
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com