精英家教网 > 高中数学 > 题目详情

【题目】对于函数f(x)给出定义:
设f′(x)是函数y=f(x)的导数,f″(x)是函数f′(x)的导数,若方程f″(x)=0有实数解x0 , 则称点(x0 , f(x0))为函数y=f(x)的“拐点”.
某同学经过探究发现:任何一个三次函数f(x)=ax3+bx2+cx+d(a≠0)都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.给定函数 ,请你根据上面探究结果,计算
=

【答案】2016
【解析】解:由
∴f′(x)=x2﹣x+3,
所以f″(x)=2x﹣1,由f″(x)=0,得x=
∴f(x)的对称中心为( ,1),
∴f(1﹣x)+f(x)=2,
故设f( )+f( )+f( )+…+f( )=m,
则f( )+f( )+…+f( )=m,
两式相加得2×2016=2m,
则m=2016,
故答案为:2016.
由题意对已知函数求两次导数可得图象关于点( ,1)对称,即f(x)+f(1﹣x)=2,即可得到结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx﹣ax2+
(I) 当a= 时,判断f(x)在其定义上的单调性;
(Ⅱ)若函数f(x)有两个极值点x1 , x2 , 其中x1<x2 . 求证:
(i)f(x2)>0;
(ii)x1+x2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本题满分15如图在四棱锥平面PAD平面ABCDE是BD的中点

求证:EC//平面APD;

求BP与平面ABCD所成角的正切值;

求二面角正弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生成绩的中位数是83,乙班学生成绩的平均数是86,则x+y的值为(

A.168
B.169
C.8
D.9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,且a≠1,函数 ,设函数f(x)的最大值为M,最小值为N,则(
A.M+N=8
B.M+N=10
C.M﹣N=8
D.M﹣N=10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD中,AB⊥CD,AD∥BC,AD=3,BC=2AB=2,E,F分别在BC,AD上,EF∥AB.现将四边形ABEF沿EF折起,使平面ABEF⊥平面EFDC.
(Ⅰ)若BE= ,在折叠后的线段AD上是否存在一点P,且 ,使得CP∥平面ABEF?若存在,求出λ的值,若不存在,说明理由;
(Ⅱ)求三棱锥A﹣CDF的体积的最大值,并求此时二面角E﹣AC﹣F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)是定义在(0,+∞)上单调函数,且对x∈(0,+∞),都有f(f(x)﹣lnx)=e+1,则方程f(x)﹣f′(x)=e的实数解所在的区间是(
A.(0,
B.( ,1)
C.(1,e)
D.(e,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2 sin cos ﹣2sin2 (ω>0)的最小正周期为3π.
(I)求函数f(x)的单调递增区间;
(Ⅱ)在△ABC中,a,b,c分别为角A,B,C所对的边,a<b<c, a=2csinA,并且f( A+ )= ,求cosB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|2x﹣1|+|2x﹣3|,x∈R.
(1)若函数f(x)=|2x﹣1|+|2x﹣3|的最小值,并求取的最小值时x的取值范围;
(2)若g(x)= 的定义域为R,求实数m的取值范围.

查看答案和解析>>

同步练习册答案