精英家教网 > 高中数学 > 题目详情

【题目】已知点是椭圆上的一点,为椭圆的两焦点,若,试求:

1)椭圆的方程;

2的面积.

【答案】(1);(2)20

【解析】

(1)设出焦点的坐标,利用垂直关系求出 c 值,椭圆的方程化为+=1,把点P的坐

标代入,可解得a2的值,从而得到所求椭圆方程.(2) P点纵坐标的值即为F1F2边上的高,

=|F1F24 求得△PF1F2的面积.

(1) F1(﹣c,0),F2(c,0),PF1PF2

=﹣1,解得 c=5,∴椭圆方程为 +=1.

∵点P(3,4)在椭圆上,∴+=1,解得 a2=45,或a2=5,

ac,a2=5舍去,故所求椭圆方程为 +=1.

(2) P点纵坐标的值即为F1F2边上的高,

=|F1F24=×10×4=20.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,底面ABCD是正方形,ACBD交于点OPC⊥底面ABCD, 点E为侧棱PB的中点.

求证:(1) PD∥平面ACE

(2) 平面PAC⊥平面PBD

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】今年的西部决赛勇士和火箭共进行了七场比赛,经历了残酷的“抢七”比赛,两队的当家球星库里和杜兰特七场比赛的每场比赛的得分如下表:

第一场

第二场

第三场

第四场

第五场

第六场

第七场

库里

26

28

24

22

31

29

36

杜兰特

26

29

33

26

40

29

27

(1)绘制两人得分的茎叶图;

(2)分析并比较两位球星的七场比赛的平均得分及得分的稳定程度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某手机商城2018年华为、苹果、三星三种品牌的手机各季度销量的百分比堆积图(如:第三季度华为销量约占50%,苹果销量约占20%,三星销量约占30%).根据该图,以下结论中一定正确的是(  )

A.华为的全年销量最大B.苹果第二季度的销量大于第三季度的销量

C.华为销量最大的是第四季度D.三星销量最小的是第四季度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解春季昼夜温差大小与某种子发芽多少之间的关系,现在从4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,得到如下表格:

日期

4月1日

4月7日

4月15日

4月21日

4月30日

温差x/℃

10

11

13

12

8

发芽数y/颗

23

25

30

26

16

(1)从这5天中任选2天,记发芽的种子数分别为,求事件“均不小于25”的概率;

(2) 若由线性回归方程得到的估计数据与4月份所选5天的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的. 请根据4月74月15日与4月21日这三天的数据,求出关于的线性回归方程,并判定所得的线性回归方程是否可靠?

参考公式:

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解高三学生的心理健康状况,某校心理健康咨询中心对该校高三学生的睡眠状况进行抽样调查,随机抽取了50名男生和50名女生,统计了他们进入高三后的第一个月平均每天睡眠时间,得到如下频数分布表.规定:“平均每天睡眠时间大于等于8小时”为“睡眠充足”,“平均每天睡眠时间小于8小时”为“睡眠不足”.

高三学生平均每天睡眠时间频数分布表

睡眠时间(小时)

[5,6)

[6,7)

[7,8)

[8,9)

[9,10)

男生(人)

4

18

10

12

6

女生(人)

2

20

16

8

4

(Ⅰ)请将下面的列联表补充完整:

睡眠充足

睡眠不足

合计

男生(人)

32

女生(人)

12

总计

100

(Ⅱ)根据已完成的2×2列联表,判断是否有90%的把握认为“睡是否充足与性别有关”?

附:参考公式

P(K2≥k)

0.100

0.050

0.010

0.001

k

2.706

3.841

6.636

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着支付宝、微信等支付方式的上线,越来越多的商业场景可以实现手机支付.为了解各年龄层的人使用手机支付的情况,随机调查了50个人,并把调查结果制成下表:

(1)把年龄在称为中青年,年龄在称为中老年,请根据上表完成列联表,是否有以上的把握判断使用手机支付与年龄(中青年、中老年)有关联?

(2)若分别从年龄在的被调查者中各随机选取2人进行调查,记选中的4人中使用手机支付的人数记为,求.

附:可能用到的公式:,其中

0.100

0.050

0.025

0.010

0.005

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合

()时,求A∩(RB)

()时,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人独立地解决同一问题,甲解出此问题的概率是,乙解出此问题的概率是.求:

1)甲、乙都解出此问题的概率;

2)甲、乙都未解出此问题的概率;

3)甲、乙恰有一人解出此问题的概率;

4)至少有一人解出此问题的概率.

查看答案和解析>>

同步练习册答案