精英家教网 > 高中数学 > 题目详情

【题目】共享单车的推广给消费者带来全新消费体验,迅速赢得广大消费者的青睐,然而,同时也暴露出管理、停放、服务等方面的问题,为了了解公众对共享单车的态度(提倡或不提倡),某调查小组随机地对不同年龄段50人进行调查,将调查情况整理如下表:

并且,年龄在的人中持“提倡”态度的人数分别为5和3,现从这两个年龄段中随机抽取2人征求意见.

(Ⅰ)求年龄在中被抽到的2人都持“提倡”态度的概率;

(Ⅱ)求年龄在中被抽到的2人至少1人持“提倡”态度的概率.

【答案】(1);(2).

【解析】试题分析:(1)年龄在[20,25)中共有6人,其中持提倡态度的人数为5,其中抽两人,基本事件总数n=15,被抽到的2人都持提倡态度包含的基本事件个数m=10,由此能求出年龄在[20,25)中被抽到的2人都持提倡态度的概率.(2)年龄在[40,45)中共有5人,其中持提倡态度的人数为3,其中抽两人,基本事件总数n′=10,年龄在[40,45)中被抽到的2人至少1人持提倡态度包含的基本事件个数m′=9,由此能求出年龄在[40,45)中被抽到的2人至少1人持提倡态度的概率.

解析:

(1)设在中的6人持“提倡”态度的为 ,持“不提倡”态度的为.

总的基本事件有(),(),(),(),(),(),(),(),(),(),(),(),(),(),().共15个,其中两人都持“提倡”态度的有10个,

所以P==

(2)设在中的5人持“提倡”态度的为 ,持“不提倡”态度的为 .

总的基本事件有(),(),(),(),(),(),(),(),(),(),共10个,其中两人都持“不提倡”态度的只有()一种,所以P==

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知内角的角平分线.

(1)用正弦定理证明:

2)若,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点M(﹣2,﹣1),离心率为.过点M作倾斜角互补的两条直线分别与椭圆C交于异于M的另外两点P、Q.

(Ⅰ)求椭圆C的方程;

(Ⅱ)试判断直线PQ的斜率是否为定值,证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中, 为正三角形, , 为棱的中点.

(1)求证:平面平面;

(2)若直线与平面所成角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调区间;

(2)当时,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某保险公司有一款保险产品的历史户获益率(获益率=获益÷保费收入的频率分布直方图如图所示:

)试估计平均收益率;

)根据经验若每份保单的保费在元的基础上每增加元,对应的销量(万份)与(元)有较强线性相关关系,从历史销售记录中抽样得到如下的对应数据:

(元)

销量(万份)

根据数据计算出销量(万份)与(元)的回归方程为

)若把回归方程当作的线性关系,用()中求出的平均获益率估计此产品的获益率,每份保单的保费定为多少元时此产品可获得最大获益,并求出该最大获益.

参考公示:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三棱柱中, 平面 分别是棱的中点.

(1)求证: 平面

(2)求证: 平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】供电部门对某社区位居民201611月份人均用电情况进行统计后,按人均用电量分为 五组,整理得到如下的频率分布直方图,则下列说法错误的是(

A. 11月份人均用电量人数最多的一组有

B. 11月份人均用电量不低于度的有

C. 11月份人均用电量为

D. 在这位居民中任选位协助收费,选到的居民用电量在一组的概率为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,其中常数.

(1)当时,求函数的极值;

(2)若函数有两个零点,求证:

(3)求证: .

选做题:

查看答案和解析>>

同步练习册答案