精英家教网 > 高中数学 > 题目详情
3.如图,四棱锥P-ABCD的底面是矩形,PA⊥底面ABCD,PA=AD,点E、F分别为棱AB、PD的中点.
(Ⅰ)求证:AF∥平面PCE;
(Ⅱ)  AD与平面PCD所成的角的大小.

分析 (Ⅰ)取PC的中点G,连结FG、EG,则FG$\underline{\underline{∥}}\frac{1}{2}$CD,AE$\underline{\underline{∥}}\frac{1}{2}$CD,因此FG$\underline{\underline{∥}}$AE,AF∥EG又EG?平面PCE,AF?平面PCE,AF∥平面PCE;
(Ⅱ)PA⊥底面ABCD,可证明CD⊥平面ADP,CD⊥AF,则AF⊥PD,AF⊥平面PCD,∠ADP就是AD与平面PCD所成的角,PA=AD,∠PDA=45°.

解答 解:(Ⅰ)证明:取PC的中点G,连结FG、EG,
∴FG为△CDP的中位线,
∴FG$\underline{\underline{∥}}\frac{1}{2}$CD,…2分
∵四边形ABCD为矩形,E为AB的中点,
∴AE$\underline{\underline{∥}}\frac{1}{2}$CD,…3分
∴FG$\underline{\underline{∥}}$AE,
∴四边形AEGF是平行四边形,…4分
∴AF∥EG又EG?平面PCE,
AF?平面PCE,
∴AF∥平面PCE;  …6分
(Ⅱ)∵PA⊥底面ABCD,
∴PA⊥AD,PA⊥CD,
又AD⊥CD,PA∩AD=A,
∴CD⊥平面ADP …7分
又AF?平面ADP,
∴CD⊥AF …8分
在直角三角形PAD中,PA=AD且F是PD的中点,
∴AF⊥PD,…9分
又CD∩PD=D,
∴AF⊥平面PCD.…10分
∴∠ADP就是AD与平面PCD所成的角.…12分
在直角三角形PAD中,PA=AD,
∴∠PDA=45°…13分
∴AD与平面PCD所成的角是45°.…

点评 本题考查线面位置关系,直线与平面所成的角的大小,考查空间想象能力,转化思想,计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.若等差数列满足a7+a8+a9>0,a8+a9<0,则当{an}的前n项和最大时n的值为(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若点P在y=x2上,点Q在x2+(y-3)2=1上,则|PQ|的最小值为(  )
A.$\sqrt{3}$-1B.$\frac{\sqrt{11}}{2}$-1C.2D.$\frac{\sqrt{10}}{2}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知圆M:x2+y2=4,在圆周上随机取一点P,则P到直线y=-x+2的距离大于$2\sqrt{2}$的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知直线l的参数方程为:$\left\{\begin{array}{l}y=\frac{{\sqrt{3}}}{2}t\\ x=m+\frac{1}{2}t\end{array}\right.$(t为参数),曲线C的极坐标方程为:ρ2cos2θ=1.
(1)以极点为原点,极轴为x轴正半轴,建立直角坐标系,求曲线C的直角坐标方程;
(2)若求直线,被曲线C截得的弦长为$2\sqrt{10}$,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若方程$\frac{x^2}{m-1}+\frac{y^2}{2-m}=1$表示椭圆,则m的取值范围是(1,1.5)∪(1.5,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.求值:log225•log3$\frac{1}{16}$•log5$\frac{1}{9}$=16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|<\frac{π}{2})$的最小值为-3,且f(x)图象相邻的最高点与最低点的横坐标之差为2π,又f(x)的图象经过点$(0,\frac{3}{2})$;
(1)求函数f(x)的解析式;
(2)若方程f(x)-k=0在$x∈[0,\frac{11π}{3}]$有且仅有两个零点x1,x2,求k的取值范围,并求出x1+x2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合M={第一象限角},N={锐角},P={小于90°角},则下列关系式中正确的是(  )
A.M=N=PB.M?P=NC.M∩P=ND.N∩P=N

查看答案和解析>>

同步练习册答案