精英家教网 > 高中数学 > 题目详情
2.设函数y=f(x)是偶函数,f′(x)是f(x)的导函数,若f′(x)>f(x),则下列不等式(e为自然对数的底数)①e2f(2)<ef(1)<f(0);②e-1f(1)<f(0)<e2f(2);③e2f(2)<f(0)<e-1f(1)成立的个数有(  )
A.0B.1C.2D.3

分析 y=f(x)为偶函数,f(-1)=f(1).构造函数g(x)=exf(-x),研究g(x)的单调性,结合原函数的性质和函数值,即可求解.

解答 解:∵y=f(x)为偶函数,∴f(-1)=f(1).
构造g(x)=exf(x)=exf(-x),则g′(x)=ex[f(x)-f′(x)]<0,
∴g(x)=exf(x)单调递减,
∴e2f(2)<ef(1)<f(0);e2f(2)<f(0)<e-1f(1)
故选:C.

点评 本题考查函数的奇偶性与单调性,正确构造函数是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.不等式6x2-x-1≤0的解集是(  )
A.$[-\frac{1}{2},\frac{1}{3}]$B.$[\frac{1}{3},\frac{1}{2}]$C.$[-\frac{1}{3},\frac{1}{2}]$D.$[-\frac{1}{2},-\frac{1}{3}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列各函数中,值域为(0,+∞)的是(  )
A.y=${3^{\frac{1}{x+1}}}$B.y=${2^{-\frac{x}{2}}}$C.y=x2+x+1D.y=$\sqrt{1-{2}^{x}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设A=(-∞,4),函数$g(x)=\sqrt{{x^2}-2x-3}$的定义域为集合B.
求:(1)B;
(2)A∩B,A∪B,∁R(A∩B)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.函数f(x)、g(x)的定义域都是R,f(x)是奇函数,g(x)为偶函数,且2f(x)+3g(x)=9x2-4x+1.
(1)求f(x),g(x)的解析式;
(2)若F(x)=[f(x)]2-3g(x),求F(x)的值域和单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.记事件A为“直线ax-by=0与圆(x-2$\sqrt{2}$)2+y2=6相交”.
(1)若将一颗骰子先后掷两次得到的点数分别记为a,b,求事件A发生的概率.
(2)若实数a、b满足(a-$\sqrt{3}$)2+(b-1)2≤4,求事件A发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若三棱锥的三条侧棱两两垂直,且侧棱长都相等,其外接球的表面积是4π,则其侧棱长为(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{2\sqrt{3}}{3}$C.$\frac{2\sqrt{2}}{3}$D.$\frac{\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,已知PA⊥平面ABC,∠ACB=90°,AP=AC,E为PC的中点.求证:
(1)BC⊥平面PAC;
(2)AE⊥平面PBC;
(3)AE⊥PB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知sinα=$\frac{1}{2}$,cosα=$\frac{\sqrt{3}}{2}$,求角α的终边与以原点为圆心,4为半径圆的交点坐标.

查看答案和解析>>

同步练习册答案