精英家教网 > 高中数学 > 题目详情
已知x+5y≤60,5x+3y≤40,x∈N,y∈N,求Z=200x+150y的最大值.
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用目标函数的几何意义,即可得到结论.
解答: 解:作出不等式组对应的平面区域如图:
平移直线Z=200x+150y,
由图象可知,当直线经过点B时,直线截距最大,此时Z也最大,
当y=0时,x=60,
此时B(60,0),代入目标函数
得Z=200×60=12000.
点评:本题主要考查线性规划的应用,利用数形结合是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线E:
x2
a2
-
y2
b2
=1(a,b>0)的左焦点为F(-3,0),过点F的直线与E相交于A,B两点,若线段AB的中点为N(12,15),则E的方程为(  )
A、
x2
3
-
y2
6
=1
B、
x2
4
-
y2
5
=1
C、
x2
5
-
y2
4
=1
D、
x2
6
-
y2
3
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P在椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
上,以P为圆心的圆与x轴相切于椭圆的右焦点F2,且
OP
OF2
=2
tan∠OPF2=
2
,其中O为坐标原点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知点M(-1,0),设Q是椭圆C上的一点,过Q、M两点的直线l交y轴于点N,若
NQ
=2
QM
,求直线l的方程;
(Ⅲ)作直线l1与椭圆D:
x2
a2
+
2y2
b2
=1
交于不同的两点S,T,其中S点的坐标为(-2,0),若点G(0,t)是线段ST垂直平分线上一点,且满足
GS
GT
=4
,求实数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,如图,A,B是圆O上的两点,且OA⊥OB,OA=2,C为OA的中点,连接BC并延长交圆O于点D,则CD=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,设椭圆C:
x2
a2
+
y2
a2
=1(a>b>0)的左、右焦点为F1,F2,短轴的两个端点分别为A,B,且满足|
F1A
+
F1B
|=|
F2A
-
F2B
|,椭圆C经过点(
2
,1).
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设过点M(
2
3
,0)且斜率为k的动直线l与椭圆C相交于P,Q两点,问:在x轴的正半轴上是否存在一个定点T,使得无论直线l如何转动,以PQ为直径的圆恒过定点T?若存在,求出点T的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(Ⅰ)若函数在区间(a,a+
1
2
 )(a>0)上存在极值,求实数a的取值范围;
(Ⅱ)求证:当x≥1时,不等式f(x)>
2sinx
x+1
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:x2=2py(p>0)的焦点为F(0,1).
(Ⅰ)求抛物线C的方程;
(Ⅱ)如图,过F作两条互相垂直的直线l1与l2,分别交抛物线C于A、B与D、E,设AB、DE的中点分别为M、N,求△FMN面积S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}满足an+1=2an+n2-4n+1.
(1)若a1=3,求证:存在f(n)=an2+bn+c(a,b,c为常数),使数列{an+f(n)}是等比数列,并求出数列{an}的通项公式;
(2)若an是一个等差数列{bn}的前n项和,求首项a1的值与数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知cos(θ+
π
4
)=-
10
10
,θ∈(0,
π
2
),则sin(2θ-
π
3
)=
 

查看答案和解析>>

同步练习册答案