精英家教网 > 高中数学 > 题目详情
已知曲线C1的参数方程为
x=a+t
y=-
3
t
(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2.
(1)求曲线C1、C2的普通方程;
(2)若曲线C1、C2有公共点,求a的取值范围.
考点:直线的参数方程,简单曲线的极坐标方程
专题:坐标系和参数方程
分析:(1)由参数方程和普通方程的关系易得曲线C1、C2的普通方程分别为:
3
x+y-
3
a=0,x2+y2=4;
(2)由直线和圆的位置关系可得圆心(0,0)到直线
3
x+y-
3
a=0的距离d≤2,由距离公式可得d的不等式,解不等式可得.
解答: 解:(1)∵曲线C1的参数方程为
x=a+t
y=-
3
t
(t为参数),
∴消去参数t可得
3
x+y-
3
a=0,
又曲线C2的极坐标方程为ρ=2,
x2+y2
=2,平方可得x2+y2=4,
∴曲线C1、C2的普通方程分别为:
3
x+y-
3
a=0,x2+y2=4;
(2)若曲线C1、C2有公共点,
则圆心(0,0)到直线
3
x+y-
3
a=0的距离d≤2,
|-
3
a|
3+12
≤2,解得-
4
3
3
≤a≤
4
3
3

∴a的取值范围为:[-
4
3
3
4
3
3
]
点评:本题考查直线和圆的参数方程,涉及直线和圆的位置关系,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

与y=x为同一个函数的是(  )
A、y=
x2
B、y=
x2
x
C、
3x3
D、y=(
x
)2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,PD⊥平面ABCD,AB∥CD,∠ADC=90°,且CD=2,AD=
2
,AB=PD=1,E在线段PC上移动,且
PE
PC

(1)当λ=
1
3
时,证明:直线PA∥平面EBD;
(2)是否存在λ,使面EBD与面PBC所成二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱柱ABCD-A1B1C1D1的底面ABCD是边长为2的菱形,AC∩BD=O,AA1=2
3
,BD⊥A1A,∠BAD=∠A1AC=60°,点M是棱AA1的中点.
(1)求证:A1C∥平面BMD;
(2)求证:A1O⊥平面ABCD;
(3)求三棱锥B-AMD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga
x+1
x-1
(a>0,a≠1)
(1)求f(x)的定义域;
(2)讨论f(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图四棱锥P-ABCD中,底面ABCD是平行四边形,PG⊥平面ABCD,垂足为G,G在AD上且AG=
1
3
Gd′,BG⊥GC,GB=GC=2,E是BC的中点,四面体P-BCG的体积为
8
3

(1)求过点P,C,B,G四点的球的表面积;
(2)求直线DP与平面PBG所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若圆锥的轴截面是正三角形,则它的侧面积是底面积的(  )
A、4倍
B、3倍
C、
2
D、2倍

查看答案和解析>>

科目:高中数学 来源: 题型:

已知中心在原点的椭圆C的右焦点为(
3
,0),右顶点为(2,0),
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l:y=kx+
2
与椭圆C恒有两个不同的交点A和B,且
OA
OB
>2(其中O为原点),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)设x,y∈R,向量
a
=(x,1),
b
=(1,y),
c
=(2,-4),且
a
c
b
c
,求|
a
+
b
|和
a
+
b
c
的夹角;
(2)设0为△ABC的外心,已知AB=3,AC=4,非零实数x,y满足
AO
=x
AB
+y
AC
且x+2y=1,则cos∠BAC的值.

查看答案和解析>>

同步练习册答案