精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1﹣x)f′(x)的图象如图所示,则下列结论中一定成立的是(

A.函数f(x)有极大值f(2)和极小值f(1)
B.函数f(x)有极大值f(﹣2)和极小值f(1)
C.函数f(x)有极大值f(2)和极小值f(﹣2)
D.函数f(x)有极大值f(﹣2)和极小值f(2)

【答案】D
【解析】解:由函数的图象可知,f′(﹣2)=0,f′(2)=0,并且当x<﹣2时,f′(x)>0,当﹣2<x<1,f′(x)<0,函数f(x)有极大值f(﹣2).又当1<x<2时,f′(x)<0,当x>2时,f′(x)>0,故函数f(x)有极小值f(2).
故选D.
利用函数的图象,判断导函数值为0时,左右两侧的导数的符号,即可判断极值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知曲线C: =1,以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(cosθ﹣2sinθ)=6.
(Ⅰ)写出直线l的直角坐标方程和曲线C的参数方程;
(Ⅱ)在曲线C上求一点P,使点P到直线l的距离最大,并求出此最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线C以F1(﹣2,0)、F2(2,0)为焦点,且过点P(7,12).
(1)求双曲线C与其渐近线的方程;
(2)若斜率为1的直线l与双曲线C相交于A,B两点,且 (O为坐标原点).求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于x的不等式ex﹣(a+1)x﹣b≥0(e为自然对数的底数)在R上恒成立,则(a+1)b的最大值为(
A.e+1
B.e+
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数h(x)=ax3﹣1(a∈R),g(x)=lnx,f(x)=h(x)+3xg(x)(e为自然对数的底数).
(I)若f(x)图象过点(1,﹣1),求f(x)的单调区间;
(II)若f(x)在区间( ,e)上有且只有一个极值点,求实数a的取值范围;
(III)函数F(x)=(a﹣ )x3+ x2g(a)﹣h(x)﹣1,当a>e 时,函数F(x)过点A(1,m)的切线至少有2条,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x﹣alnx(a∈R)
(1)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;
(2)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:函数f(x)=lg(ax2﹣ax+1)的定义域是R;命题 在第一象限为增函数,若“p∧q”为假,“p∨q”为真,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x,y∈[0,π],则cos(x+y)+cosx+2cosy的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex﹣alnx﹣a. (Ⅰ)当a=e时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)证明:对于a∈(0,e),f(x)在区间 上有极小值,且极小值大于0.

查看答案和解析>>

同步练习册答案