精英家教网 > 高中数学 > 题目详情
10.若3π<x<4π,则$\sqrt{\frac{1+cosx}{2}}$+$\sqrt{\frac{1-cosx}{2}}$=$\sqrt{2}$cos($\frac{x}{2}$+$\frac{π}{4}$).

分析 直接利用二倍角的余弦函数化简求解即可.

解答 解:3π<x<4π,∴$\frac{x}{2}$∈$(\frac{3π}{2},2π)$
则$\sqrt{\frac{1+cosx}{2}}$+$\sqrt{\frac{1-cosx}{2}}$=$\sqrt{\frac{1+2{cos}^{2}\frac{x}{2}-1}{2}}$+$\sqrt{\frac{1-1+2{sin}^{2}\frac{x}{2}}{2}}$=cos$\frac{x}{2}$-sin$\frac{x}{2}$=$\sqrt{2}$cos($\frac{x}{2}$+$\frac{π}{4}$).
故答案为:$\sqrt{2}$cos($\frac{x}{2}$+$\frac{π}{4}$).

点评 本题可得两角和与差的三角函数,二倍角公式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知i是虚数单位,则$\frac{3-i}{1+i}$的模与虚部的积等于(  )
A.$2\sqrt{5}i$B.$-2\sqrt{5}i$C.$2\sqrt{5}$D.$-2\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的前n项和Sn满足:Sn+1=kSn+p(kp≠0),a1=p(n∈N).
(1)求证:数列{an}是以k为公比的等比数列.并求出数列{an}的通项公式;
(2)已知k>-1,m,n是正整数,求证:km+kn≤1+km+n
(3)若p=1,k>-1,求证;Sn≤$\frac{n({a}_{1}+{a}_{2})}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=3|x-1|,则函数f(x)的单调递减区间是(  )
A.(-∞,-1)B.(-∞,1)C.(-1,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.己知f(1+x)=f(1-x),且f(-x)+f(x)=0,当x∈[1,3]时,f(x)=-x+2:
(1)求x∈[-1,1]时,f(x)的解析式;(2)求证:x=-1为f(x)的一条对称轴;(3)求不等式f(x)≥$\frac{1}{2}$的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=sin(2x+φ)的图象的一个对称中心为($\frac{π}{3}$,0),若|φ|<$\frac{π}{2}$,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数y=(m2-3m+3)x${\;}^{\frac{{m}^{2}}{3}-1}$为幂函数,求其解析式,并讨论函数的单调性和奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.对数函数g(x)的反函数f(x)满足f(-$\frac{3}{2}$)=27,则g(3)=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列函数中,为对数函数的是(  )
A.y=lnxB.x=log327C.y=log-2xD.y=5x

查看答案和解析>>

同步练习册答案