椭圆C1:+=1(a>b>0)的左、右顶点分别为A,B,点P是双曲线C2:-=1在第一象限内的图象上一点,直线AP,BP与椭圆C1分别交于C,D点,若S△ACD=S△PCD.
(1)求P点的坐标.
(2)能否使直线CD过椭圆C1的右焦点,若能,求出此时双曲线C2的离心率;若不能,请说明理由.
(1) P(2a,b) (2) 能, e'=,理由见解析
【解析】(1)设P(x,y)在双曲线上,则有b2x2-a2y2=a2b2 ①,
∵A(-a,0),B(a,0),
∴PA的中点为C(,),
点C在椭圆上,代入椭圆方程,化简得
b2x2+a2y2-2ab2x=3a2b2 ②
①+②:2b2x2-2ab2x=4a2b2,
∴x2-ax-2a2=0,(x+a)(x-2a)=0.
∵P在双曲线右支上,∴x+a≠0,则x=2a.
代入①:a2y2=3a2b2,P在第一象限,
∴y>0,y=b,得P(2a,b).
(2)由P(2a,b)及B(a,0)得PB:y=(x-a).
代入椭圆方程:
b2x2+a2·(x2-2ax+a2)=a2b2,
∴4b2x2-6ab2x+2a2b2=0.
2x2-3ax+a2=0,(2x-a)(x-a)=0.
∵x<a,∴x=,
从而y=(-)=-b,
得D(,-b).同理可得C(,b).
C,D横坐标相同,知CD⊥x轴.
如CD过椭圆右焦点F2(c,0),∴c=,即a=2c,
从而b2=a2-c2=a2.设双曲线半焦距为c',
则c'2=a2+b2=a2,∴e'=.
于是直线CD可通过椭圆C1的右焦点,此时双曲线C2的离心率为e'=.
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十四第八章第五节练习卷(解析版) 题型:选择题
已知曲线C上的动点M(x,y),向量a=(x+2,y)和b=(x-2,y)满足|a|+|b|=6,则曲线C的离心率是( )
(A) (B) (C) (D)
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十八第八章第九节练习卷(解析版) 题型:解答题
已知平面内一动点P到点F(1,0)的距离与点P到y轴的距离的差等于1.
(1)求动点P的轨迹C的方程.
(2)过点F作两条斜率存在且互相垂直的直线l1,l2,设l1与轨迹C相交于点A,B,l2与轨迹C相交于点D,E,求·的最小值.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十八第八章第九节练习卷(解析版) 题型:选择题
已知m,n为两个不相等的非零实数,则方程mx-y+n=0与nx2+my2=mn所表示的曲线可能是( )
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十五第八章第六节练习卷(解析版) 题型:填空题
已知双曲线-=1的右焦点的坐标为(,0),则该双曲线的渐近线方程为_______.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十五第八章第六节练习卷(解析版) 题型:选择题
双曲线-y2=1(n>1)的左、右两个焦点为F1,F2,P在双曲线上,且满足|PF1|+|PF2|=2,则△PF1F2的面积为( )
(A) (B)1 (C)2 (D)4
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十二第八章第三节练习卷(解析版) 题型:选择题
若原点在圆(x-m)2+(y+m)2=8的内部,则实数m的取值范围是( )
(A)-2<m<2 (B)0<m<2
(C)-2<m<2 (D)0<m<2
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十七第八章第八节练习卷(解析版) 题型:选择题
设x1,x2∈R,常数a>0,定义运算“*”:x1*x2=(x1+x2)2-(x1-x2)2,若x≥0,则动点P(x,)的轨迹是( )
(A)圆 (B)椭圆的一部分
(C)双曲线的一部分 (D)抛物线的一部分
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com