精英家教网 > 高中数学 > 题目详情
已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于A、B两点,O为坐标原点,若双曲线的离心率为2,△AOB的面积为
3
,则该抛物线的标准方程是
 
考点:双曲线的简单性质
专题:
分析:把x=-
p
2
代入y=±
b
a
x
,解得y,可得|AB|=
pb
a
,利用△AOB的面积为
3
,可得
1
2
×
p
2
×
pb
a
=
3
,再利用e=
c
a
=
1+(
b
a
)2
=2,解得
b
a
.即可得出p.
解答: 解:把x=-
p
2
代入y=±
b
a
x
,解得y=±
pb
2a

∴|AB|=
pb
a

∵△AOB的面积为
3

1
2
×
p
2
×
pb
a
=
3

e=
c
a
=
1+(
b
a
)2
=2,解得
b
a
=
3

p2
4
×
3
=
3

解得p=2.
∴该抛物线的标准方程是y2=4x.
故答案为:y2=4x.
点评:本题考查了双曲线与抛物线的标准方程及其性质,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在圆x2+y2-2x=0上求一点P,使P到直线x+y+1=0的距离最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的图象(如图所示)过点(0,2)、(1.5,2)和点(2,0),且函数图象关于点(2,0)对称;直线x=1和x=3及y=0是它的渐近线.现要求根据给出的函数图象研究函数g(x)=
1
f(x)
的相关性质与图象.
(1)写出函数y=g(x)的定义域、值域及单调递增区间;
(2)作函数y=g(x)的大致图象(要充分反映由图象及条件给出的信息);
(3)试写出y=f(x)的一个解析式,并简述选择这个式子的理由(按给出理由的完整性及表达式的合理、简洁程度分层给分).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,PA是圆O的切线,A为切点,PA=4,PB=2,则直径AC=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,以BC为直径的半圆分别交AB,AC于点E,F,且AC=2AE,那么
AF
AB
=
 
;∠A=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x+3
x+1
,g(x)=|x-
a
x
|.
(1)a=-2时,求函数g(x)的最小值;
(2)若对?t∈[1,3],在区间[1,3]总存在两个不同的x,使得g(x)=f(t),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2
4
sin(
π
4
-x)+
6
4
cos(
π
4
-x).
(1)求f(x)的最小正周期;
(2)若cosθ=
4
5
,θ∈(
2
,2π)
,求f(2θ+
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1,F2为双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点,且直线y=2x为双曲线C的一条渐近线,点P为C上一点,如果|PF1|-|PF2|=4,那么双曲线C的方程为
 
;离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

方程f(x)=x的根称为f(x)的不动点,若函数f(x)=
x
a(x+2)
有唯一不动点,且x1=1000,xn+1=
1
f(
1
xn
)
(n∈N*),则x2013=(  )
A、2006B、2008
C、2012D、2013

查看答案和解析>>

同步练习册答案