3£®Ä³Ñо¿ÐÔѧϰС×é¶Ô´º¼¾Öçҹβî´óСÓëij»¨»ÜÖÖ×Ó·¢Ñ¿¶àÉÙÖ®¼äµÄ¹Øϵ½øÐÐÑо¿£¬ËûÃÇ·Ö±ð¼Ç¼ÁË3ÔÂ1ÈÕÖÁ3ÔÂ5ÈÕµÄÿÌìÖçҹβîÓëʵÑéÊÒÿÌìÿ100¿ÅÖÖ×Ó½þÅݺóµÄ·¢Ñ¿Êý£¬µÃµ½Èç±í×ÊÁÏ£º
ÈÕ    ÆÚ3ÔÂ1ÈÕ3ÔÂ2ÈÕ3ÔÂ3ÈÕ3ÔÂ4ÈÕ3ÔÂ5ÈÕ
βîx£¨¡æ£©101113128
·¢Ñ¿Êýy£¨¿Å£©2325302616
£¨1£©ÈôÑ¡È¡µÄÊÇ3ÔÂ1ÈÕÓë3ÔÂ5ÈÕµÄÁ½×éÊý¾Ý£¬Çë¸ù¾Ý3ÔÂ2ÈÕÖÁ3ÔÂ4ÈÕµÄÊý¾Ý£¬Çó³öy¹ØÓÚxµÄÏßÐԻع鷽³Ìy=bx+a£»
£¨2£©ÈôÓÉÏßÐԻع鷽³ÌµÃµ½µÄ¹À¼ÆÊý¾ÝÓëËùÑ¡³öµÄ¼ìÑéÊý¾ÝµÄÎó²î¾ù²»³¬¹ý2¿Å£¬ÔòÈÏΪµÃµ½µÄÏßÐԻع鷽³ÌÊÇ¿É¿¿µÄ£¬ÊÔÎÊ£¨¢ò£©ÖÐËùµÃµÄÏßÐԻع鷽³ÌÊÇ·ñ¿É¿¿£¿
£¨²Î¿¼¹«Ê½£º»Ø¹éÖ±Ïߵķ½³ÌÊÇy=bx+a£¬ÆäÖÐb=$\frac{{{\sum_{i=1}^{n}x}_{i}y}_{i}-n\overline{x}•\overline{y}}{{{\sum_{i=1}^{n}x}_{i}}^{2}-{n\overline{x}}^{2}}$£¬a=$\overline{y}$-b$\overline{x}$£©

·ÖÎö £¨1£©ÏÈÇó³öβîxºÍ·¢Ñ¿ÊýyµÄƽ¾ùÖµ£¬¼´µÃµ½Ñù±¾ÖÐÐĵ㣬ÀûÓÃ×îС¶þ³Ë·¨µÃµ½ÏßÐԻع鷽³ÌµÄϵÊý£¬¸ù¾ÝÑù±¾ÖÐÐĵãÔÚÏßÐԻعéÖ±ÏßÉÏ£¬µÃµ½aµÄÖµ£¬µÃµ½ÏßÐԻع鷽³Ì£»
£¨2£©·Ö±ðÑéÖ¤µ±x=10¼°x=8ʱ£¬ÇóµÃyÖµ£¬·Ö±ðÑéÖ¤|y-23|£¼2¼°|y-16|£¼2ÏßÐԻع鷽³ÌÊÇ·ñ¿É¿¿£®

½â´ð £¨1£©ÓÉÊý¾Ý£¬ÇóµÃ$\overline x=\frac{1}{3}£¨11+13+12£©=12$£¬£¨1·Ö£©
$\overline y=\frac{1}{3}£¨25+30+26£©=27$£¬$3\overline x\overline y=972$£®£¨2·Ö£©
$\sum_{i=1}^3{{X_i}{Y_i}}=11¡Á25+13¡Á30+12¡Á26=977$£¬£¨3·Ö£©
$\sum_{i=1}^3{X_i^2}={11^2}+{13^2}+{12^2}=434$£¬£¨4·Ö£©
$3{\overline x^2}=432$£®£¨5·Ö£©
Óɹ«Ê½£¬ÇóµÃ$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n•\bar x•\bar y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\bar x}^2}}}}=\frac{977-972}{434-432}=\frac{5}{2}$£¬£¨6·Ö£©
$a=\bar y-b\overline{x}=27-\frac{5}{2}¡Á12=-3$£®  £¨7·Ö£©
ËùÒÔy¹ØÓÚxµÄÏßÐԻع鷽³ÌΪ$y=\frac{5}{2}x-3$£®¡­£®£¨8·Ö£©
£¨2£©µ±x=10ʱ£¬$y=\frac{5}{2}¡Á10-3=22$£¬|22-23|£¼2£»£¨11·Ö£©
ͬÑù£¬µ±x=8ʱ£¬$y=\frac{5}{2}¡Á8-3=17$£¬|17-16|£¼2£®
ËùÒÔ£¬¸ÃÑо¿ËùµÃµ½µÄÏßÐԻع鷽³ÌÊÇ¿É¿¿µÄ£® ¡­£®£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÇóÏßÐԻع鷽³Ì£¬²¢ÇÒÓÃÏßÐԻع鷽³ÌÀ´Ô¤±¨yµÄÖµ£¬´Ó¶øµÃµ½Ô¤±¨ÖµÓë¼ìÑéÊý¾ÝµÄÎó²î£¬µÃµ½ÏßÐԻع鷽³ÌÊÇ·ñ¿É¿¿£¬ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®Èçͼ£¬ÔÚ¾ØÐÎABCDÖУ¬AB=2£¬AD=3£¬µãEΪADµÄÖе㣬ÏÖ·Ö±ðÑØBE£¬CE½«¡÷ABE£¬¡÷DCA·­ÕÛ£¬Ê¹µÃµãA£¬DÖغÏÓÚF£¬´Ëʱ¶þÃæ½ÇE-BC-FµÄÓàÏÒֵΪ£¨¡¡¡¡£©
A£®$\frac{3}{4}$B£®$\frac{\sqrt{7}}{4}$C£®$\frac{2}{3}$D£®$\frac{\sqrt{5}}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Èçͼ£¬¾ØÐÎABCDÖУ¬AB=1£¬BC=2£¬°ëÔ²OÒÔBCΪֱ¾¶£¬Æ½ÃæABCD´¹Ö±ÓÚ°ëÔ²OËùÔÚµÄƽÃ棬PΪ°ëÔ²ÖÜÉÏÈÎÒâÒ»µã£¨ÓëB¡¢C²»Öغϣ©£®
£¨1£©ÇóÖ¤£ºÆ½ÃæPAC¡ÍƽÃæPAB£»
£¨2£©ÈôPΪ°ëÔ²ÖÜÖе㣬Çó´Ëʱ¶þÃæ½ÇP-AC-DµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Ò»¸ö¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬ÆäÖÐÕýÊÓͼÓë²àÊÓͼ¶¼ÊÇб±ß³¤Îª2µÄÖ±½ÇÈý½ÇÐΣ¬¸©ÊÓͼÊǰ뾶Ϊ1£¬Ô²ÐĽÇΪ$\frac{¦Ð}{2}$µÄÉÈÐΣ¬Ôò¸Ã¼¸ºÎÌåµÄ±íÃæ»ýΪ£¨¡¡¡¡£©
A£®$\frac{3¦Ð}{4}$+$\sqrt{3}$B£®$\frac{¦Ð}{2}$+$\sqrt{3}$C£®$\frac{{\sqrt{3}¦Ð}}{12}$D£®$\frac{{\sqrt{3}¦Ð}}{6}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®Èô¶ÔÈÎÒâʵÊýxʹµÃ²»µÈʽ|x-a|-|x+2|¡Ü3ºã³ÉÁ¢£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[-1£¬5]B£®[-2£¬4]C£®[-1£¬1]D£®[-5£¬1]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®Èôº¯Êýf£¨x£©=$\frac{2x}{{x}^{2}+4}$ÔÚÇø¼ä£¨a£¬2a+1£©Éϵ¥µ÷µÝÔö£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨-1£¬$\frac{1}{2}$]B£®[-2£¬$\frac{1}{2}$]C£®[-1£¬0]D£®[-1£¬$\frac{1}{2}$]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®Èç±íÊÇij³§1¡«4Ô·ÝÓÃË®Á¿£¨µ¥Î»£º°Ù¶Ö£©µÄÒ»×éÊý¾Ý£º
Ô·Ýx1234
ÓÃË®Á¿y4.5a32.5
ÓÉÉ¢µãͼ¿ÉÖª£¬ÓÃË®Á¿yÓëÔ·ÝxÖ®¼äÓнϺõÄÏßÐÔÏà¹Ø¹Øϵ£¬ÆäÏßÐԻعéÖ±Ïß·½³ÌÊÇ$\widehat{y}$=-0.7x+5.25£¬ÔòaµÈÓÚ4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®Èô²»µÈʽ£¨x+m2£©2+£¨x+am-3£©2£¾$\frac{1}{2}$¶ÔÈÎÒâµÄx¡ÊR£¬m¡Ê[1£¬3]ºã³ÉÁ¢£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇa£¼2$\sqrt{2}$»òa£¾5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®Ö´ÐÐÈçͼËùʾ³ÌÐò¿òͼ£¬ÈôÊä³ösµÄֵΪ10£¬ÔòÅжϿòÖÐÌîÈëµÄÌõ¼þ¿ÉÒÔÊÇ£¨¡¡¡¡£©
A£®i£¼10£¿B£®i¡Ü10£¿C£®i¡Ü11£¿D£®i¡Ü12£¿

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸