精英家教网 > 高中数学 > 题目详情

【题目】如图,菱形的对角线交于点,点分别在上,于点.将沿折到的位置,.

(I)证明:平面平面

(Ⅱ)求直线与平面所成角的正弦值.

【答案】(Ⅰ)见解析.( Ⅱ) .

【解析】

(I)首先根据 线段成比例可得 ,菱形对角线互相垂直, 可得 ,分别计算线段OH、HD,在 中运用勾股定理可证 ,进而可证平面,平面平面;(Ⅱ)以H为坐标原点建立平面直角坐标系,求出 的坐标以及面 的法向量,利用线面角的向量公式求解即可。

(Ⅰ)∵,∴,∴.

∵四边形为菱形,∴,∴,∴,∴.

,∴

,∴,∴

,∴,∴.

又∵,∴平面.

平面

∴平面平面.

(Ⅱ)建立如图坐标系,则,设平面的法向量

,取

.

设直线与平面所成角为

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】基于移动网络技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,给人们带来新的出行体验,某共享单车运营公司的市场研究人员为了了解公司的经营状况,对公司最近6个月的市场占有率进行了统计,结果如下表:

月份

2018.11

2018.12

2019.01

2019.02

2019.03

2019.04

月份代码

1

2

3

4

5

6

11

13

16

15

20

21

(1)请用相关系数说明能否用线性回归模型拟合与月份代码之间的关系.如果能,请计算出关于的线性回归方程,如果不能,请说明理由;

(2)根据调研数据,公司决定再采购一批单车扩大市场,从成本1000元/辆的型车和800元/辆的型车中选购一种,两款单车使用寿命频数如下表:

车型 报废年限

1年

2年

3年

4年

总计

10

30

40

20

100

15

40

35

10

100

经测算,平均每辆单车每年能为公司带来500元的收入,不考虑除采购成本以外的其它成本,假设每辆单车的使用寿命都是整数年,用频率估计每辆车使用寿命的概率,以平均每辆单车所产生的利润的估计值为决策依据,如果你是公司负责人,会选择哪款车型?

参考数据:.

参考公式:相关系数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C的参数方程为α为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系.直线1的极坐标方程为

(Ⅰ)求C的普通方程和l的直角坐标方程;

(Ⅱ)设直线lx轴和y轴的交点分别为AB,点M在曲线C上,求MAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,,侧面底面.

(1)求证:平面平面

(2)若,且二面角等于,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018115日至10日,首届中国国际进口博览会在国家会展中心(上海)举行,吸引过来58个“一带一路”沿线国家的超过1000多家企业参展,成为共建“一带一路”的又一个重要支撑。某企业为了参加这次盛会,提升行业竞争力,加大了科技投入;该企业连续6年来得科技投入(百万元)与收益(百万元)的数据统计如下:

根据散点图的特点,甲认为样本点分布在指数曲线的周围,据此他对数据进行了一些初步处理,如下表:

其中

(1)()请根据表中数据,建立关于的回归方程(保留一位小数);

)根据所建立回归方程,若该企业想在下一年的收益达到2亿,则科技投入的费用至少要多少(其中)?

(2)乙认为样本点分布在二次曲线的周围,并计算得回归方程为,以及该回归模型的相关指数,试比较甲乙两位员工所建立的模型,谁的拟合效果更好.

附:对于一组数据,……,其回归直线方程的斜率和截距的最小二乘估计分别为,相关指数:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(I)讨论函数的零点个数;

(Ⅱ)若曲线在点处的切线经过点,当时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=f(x),x∈[1,+∞),数列{an}满足

①函数f(x)是增函数;

②数列{an}是递增数列.

写出一个满足①的函数f(x)的解析式______

写出一个满足②但不满足①的函数f(x)的解析式______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种物质在时刻的浓度的函数关系为为常数).在测得该物质的浓度分别为,那么在时,该物质的浓度为___________;若该物质的浓度小于,则最小的整数的值为___________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知时都取得极值.

)求的值;

)若,求的单调区间和极值.

查看答案和解析>>

同步练习册答案