精英家教网 > 高中数学 > 题目详情

【题目】已知函数为自然对数的底数),的导函数.

)当时,求证:

(Ⅱ)是否存在正整数,使得对一切恒成立?若存在,求出的最大值;若不存在,说明理由.

【答案】)见解析;(22.

【解析】试题分析: (1)根据已知条件求出,设.根据得出上为增函数,即可得证.

(2)令,则只能取.当时,设,求出.由上是减函数,在是增函数,即.故对一切恒成立.

试题解析:(Ⅰ)当时,,则

,则

,得,故时取得最小值

上为增函数.

(Ⅱ)

,得对一切恒成立

时,可得,所以若存在,则正整数的值只能取1,2

下面证明当时,不等式恒成立

,则

由(

时,;当时,

上是减函数,在上是增函数

时,不等式恒成立

所以的最大值是22

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一座圆拱桥,当水面在如图所示位置时,拱顶离水面2米,水面宽12米,当水面下降1米后,水面宽多少米?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x|(x﹣a),a为实数.

(1)若函数f(x)为奇函数,求实数a的值;

(2)若函数f(x)在[0,2]为增函数,求实数a的取值范围;

(3)是否存在实数a(a<0),使得f(x)在闭区间上的最大值为2,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料

12月1日

12月2日

12月3日

12月4日

12月5日

温差(°C)

10

11

13

12

8

发芽数(颗)

23

25

30

26

16

农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验

1)求选取的2组数据恰好是不相邻2天数据的概率;

(2)若选取的是12月1日12月5日的两组数据,请根据12月2日12月4日的数据,求出y关于x的线性回归方程

(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?

注:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线过点,其参数方程为为参数, ),以为极点, 轴非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.

1)求曲线的普通方程和曲线的直角坐标方程;

(2)已知曲线与曲线交于两点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法:

①将一组数据中的每个数据都加上或减去同一个常数后,均值与方差都不变;

②设有一个回归方程,变量x增加一个单位时,y平均增加3个单位;

③线性回归方程必经过点

④在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说现有100人吸烟,那么其中有99人患肺病.其中错误的个数是( )

A. 0

B. 1

C. 2

D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线处的切线方程为

(1)求的值;

(2)若对任意恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合M{x|xmmZ}N{x|xnZ}P{x|xpZ}试确定MNP之间的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了打好脱贫攻坚战,某贫困县农科院针对玉米种植情况进行调研,力争有效的改良玉米品种,为农民提供技术支.现对已选出的一组玉米的茎高进行统计,获得茎叶图如右图(单位:厘米),设茎高大于或等于180厘米的玉米为高茎玉米,否则为矮茎玉米.

1)完成列联表,并判断是否可以在犯错误的概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关?

2为了改良玉米品种,现采用分层抽样的方法从抗倒伏的玉米中抽出5株,再从这5株玉米中选取2株进行杂交试验,选取的植株均为矮茎的概率是多少?

查看答案和解析>>

同步练习册答案