精英家教网 > 高中数学 > 题目详情

【题目】已知在区间上存在三个不同的实数使得以为边长的三角形是直角三角形,则的取值范围是(

A. B.

C. D.

【答案】D

【解析】f(x)=x3﹣3x+2+m,求导f′(x)=3x2﹣3f′(x)=0得到x=1或者x=﹣1,

x在[0,2]内,∴函数f(x)在区间(0,1)单调递减,在区间(1,2)单调递增,

f(x)min=f(1)=m,f(x)max=f(2)=m+4,f(0)=m+2.

∵在区间[0,2]上存在三个不同的实数a,b,c,使得以f(a),f(b),f(c)为边长的三角形是构成直角三角形,

2m2m+42,即m28m160,解得4m4+

又已知m00m4+

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知曲线 ,则下列说法正确的是( )

A. 上各点横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线

B. 上各点横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线

C. 把曲线向右平移个单位长度,再把得到的曲线上各点横坐标缩短到原来的,纵坐标不变,得到曲线

D. 把曲线向右平移个单位长度,再把得到的曲线上各点横坐标缩短到原来的,纵坐标不变,得到曲线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数),直线的参数方程为为参数),设的交点为,当变化时, 的轨迹为曲线.

(1)写出的普遍方程及参数方程;

(2)以坐标原点为极点, 轴正半轴为极轴建立极坐标系,设曲线的极坐标方程为 为曲线上的动点,求点的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别是,椭圆C的上顶点到直线的距离为,过且垂直于x轴的直线与椭圆C相交于MN两点,

且|MN|=1

I)求椭圆的方程;

II过点的直线与椭圆C相交于PQ两点,点),且,求直线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】通过随机询问某地100名高中学生在选择座位时是否挑同桌,得到如下列联表:

男生

女生

合计

挑同桌

30

40

70

不挑同桌

20

10

30

总计

50

50

100

从这50名男生中按是否挑同桌采取分层抽样的方法抽取一个容量为5的样本,现从这5人中随机选取3人做深度采访,求这3名学生中至少有2名要挑同桌的概率;

根据以上列联表,是否有以上的把握认为“性别与在选择座位时是否挑同桌”有关?

下面的临界值表供参考:

参考公式: ,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是定义在上且满足如下条件的函数组成的集合:①对任意的,都有②存在常数使得对任意的,都有.

1)设是否属于?说明理由;

2)若如果存在使得证明:这样的是唯一的;

3)设试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=x2+alnx

1)若a=﹣1,求函数fx)的极值,并指出极大值还是极小值;

2)若a=1,求函数fx)在[1e]上的最值;

3)若a=1,求证:在区间[1+∞)上,函数fx)的图象在gx=x3的图象下方.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,ABCD是边长为3的正方形,DE平面ABCD,AFDE,DE=3AF,BE与平面ABCD所成角为60°.

(1)求二面角F-BE-D的余弦值;

(2)设点M是线段BD上一个动点,试确定点M的位置,使得AM平面BEF,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四面体中,.

(1)证明:平面平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案