精英家教网 > 高中数学 > 题目详情

【题目】下列说法:

①集合{x∈N|x3=x}用列举法表示为{-1,0,1};

②实数集可以表示为{x|x为所有实数}或{R};

③方程组的解集为{x=1,y=2}.

其中正确的有(  )

A.3个B.2个

C.1个D.0个

【答案】D

【解析】

x3=x的解为-1,0,1,因为x∈N从而可知①错误;实数集可以表示为{x|x为实数}或R,故②错误;集合{x=1,y=2}表示x=1与y=2两条直线,故③错误.

∵x3=x的解为-1,0,1,

∴集合{x∈Z|x3=x}用列举法表示为{-1,0,1},故①正确;

实数集可以表示为{x|x为实数}或R,故②错误;方程组的解集为{(1,2)},集合{x=1,y=2}中的元素是x=1,y=2;故③错误;故选D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】流行性感冒多由病毒引起,据调查,空气月平均相对湿度过大或过小时,都有利于一些病毒繁殖和传播,科学测定,当空气月平均相对湿度大于65010或小于时,有利于病毒繁殖和传播.下表记录了某年甲、乙两个城市12个月的空气月平均相对湿度.

第一季度

第二季度

第三季度

第四季度

1

2

3

4

5

6

7

8

9

10

11

12

甲地

乙地

(I)从上表12个月中,随机取出1个月,求该月甲地空气月平均相对湿度有利于病毒繁殖和传播的概率;

(Ⅱ)从上表第一季度和第二季度的6个月中随机取出2个月,记这2个月中甲、乙两地空气月平均相对湿度都有利于病毒繁殖和传播的月份的个数为,求的分布列;

(Ⅲ)若,设乙地上表12个月的空气月平均相对湿度的中位数为,求的最大值和最小值.(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,真命题的个数是(  )

①若“p∨q”为真命题,则“p∧q”为真命题;

②“a∈(0,+∞),函数y=在定义域内单调递增”的否定;

③l为直线,α,β为两个不同的平面,若l⊥β,α⊥β,则l∥α;

④“x∈R,≥0”的否定为“R,<0”.

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,多面体, , ,且两两垂直.给出下列四个命题:

①三棱锥的体积为定值;

②经过四点的球的直径为;

③直线∥平面

④直线所成的角为

其中真命题的个数是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆Cab0),以椭圆短轴的一个顶点B与两个焦点F1F2为顶点的三角形周长是4+2,且∠BF1F2=

1)求椭圆C的标准方程;

2)若过点Q1)引曲线C的弦AB恰好被点Q平分,求弦AB所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】试用恰当的方法表示下列集合.

1)使函数有意义的x的集合;

2)不大于12的非负偶数;

3)满足不等式的解集;

4)由大于10小于20的所有整数组成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点.

1)若一条直线经过点,且原点到直线的距离为,求该直线的一般式方程;

2)求过点且与原点距离最大的直线的一般式方程,并求出最大距离是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,椭圆的离心率为,点在椭圆.

求椭圆的方程;

已知为平面内的两个定点,过点的直线与椭圆交于两点,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为菱形,上一点.

(1)若平面,试说明点的位置并证明的结论;

(2)若的中点,平面,且

求二面角的余弦值.

查看答案和解析>>

同步练习册答案