精英家教网 > 高中数学 > 题目详情
(理科做) 如图,∠AOB=60°,OA=2,OB=5,在线段OB上任取一点C,则△ACO为钝角三角形的概率为
2
5
2
5
分析:本题是一个等可能事件的概率,试验发生包含的事件对应的是长度为5的一条线段,满足条件的事件是组成钝角三角形,包括两种情况,第一种∠ACO为钝角,第二种∠OAC为钝角,根据等可能事件的概率得到结果.
解答:解:点C的活动范围在线段OB上,所以D的测度为5,
△ACO为钝角三角形包含∠OAC,∠OCA为钝角,
△AOC为钝角三角形时,∠ACO为钝角,或∠OAB是钝角.
当∠ACO=90°时,有勾股定理可求 OC=1;
∠OAB=90°时,由直角三角形中的边角关系 可得OC=4,BC=1
综上,所以d的测度为2,
故△AOC为钝角三角形的概率等于:
2
5

故答案为:
2
5
点评:本题考查等可能事件的概率,几何概型的解法,体现了分类讨论的数学思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网(理科做)如图所示已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面ABCD且PA=1.建立适当的空间坐标系,利用空间向量求解下列问题:
(1)求点P、B、D的坐标;
(2)当实数a在什么范围内取值时,BC边上存在点Q,使得PQ⊥QD;
(3)当BC边上有且仅有一个Q点,使得时PQ⊥QD,求二面角Q-PD-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理科做)如图,点P为椭圆
x2
9
+
y2
5
=1
上的动点,A为椭圆左顶点,F为右焦点.
(1)若∠AFP=60°,求PF所在直线被椭圆所截得的弦长|PQ|;
(2)若点M在线段PF上,且满足
FM
+
1
2
PM
=
0
,求点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理科做)如图,已知棱长为a的正方体ABCD-A1B1C1D1中,P是棱AA1上的一点,且A1P:PA=m:n.
(I)在AB上找出一点Q,使C1P⊥PQ;
(II)求当C1P⊥PQ时,线段AQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理科做) 如图,在三棱锥A-BCD中,AB⊥平面BCD,∠DBC=90°,BC=BD=2,AB=1,则BC和平面ACD所成角的
正弦值为
 

精英家教网

查看答案和解析>>

同步练习册答案