【题目】如图,已知椭圆的左、右两个焦点分别为设,若为正三角形且周长为.
(1)求椭圆的标准方程;
(2)若过点且斜率为的直线与椭圆相交于不同的两点,是否存在实数使成立,若存在,求出的值,若不存在,请说明理由;
(3)若过点的直线与椭圆相交于不同的两点两点,记的面积记为,求的取值范围.
【答案】;答案见解析
【解析】
(1)为正三角形且周长为,得周长等于,在中故得,在椭圆中有,列出方程组即可求得和的值进而求得椭圆方程;
(2)假设存在实数使成立,则.联立,通过韦达定理求解,若有解,假设成立,否则不成立.
(3)分类讨论,设直线的方程,代入椭圆方程,利用韦达定理及基本不等式的性质,即可求得的取值范围.
(1)为正三角形且周长为,故得:
在中,故得
椭圆 , 故得
联立方程可得:
解得:
故椭圆的标准方程: .
(2)假设存在实数使成立,则
设点设,
则: ①
设直线方程为
联立,消掉y得,
显然,方程有根,且 ②, ③
将代入①式得: ④
把②③式代入④式得:
化简可得: 即: 得
所以不存在实数使成立.
(3)当直线无斜率时,直线方程为此时 ,记的面积记为,
当直线斜率存在(显然)时,设直线方程为
设,联立,消掉y得,
显然方程有根,且,
此时
因为则|(时等号成立)
所以的最大值为,则
的取值范围.
科目:高中数学 来源: 题型:
【题目】在公差不为零的等差数列{an}中,a4=10,且a3、a6、a10成等比数列.
(1)求{an}的通项公式;
(2)设bn=,求数列{bn}的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,欲在一四边形花坛内挖一个等腰三角形的水池,且,已知四边形中,是等腰直角三角形,米,是等腰三角形,,的大小为,要求的三个顶点在花坛的边缘上(即在四边形的边上),设点到水池底边的距离为,水池的面积为平方米.
(1)求的长;
(2)试将表示成关于的函数,并求出的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂产生的废气经过过滤后排放,在过滤过程中,污染物的数量p(单位:毫克/升)不断减少,已知p与时间t(单位:小时)满足p(t)=,其中p0为t=0时的污染物数量.又测得当t∈[0,30]时,污染物数量的变化率是-10ln 2,则p(60)=( )
A.150毫克/升B.300毫克/升
C.150ln 2毫克/升D.300ln 2毫克/升
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班随机抽查了20名学生的数学成绩,分数制成如图的茎叶图,其中A组学生每天学习数学时间不足1个小时,B组学生每天学习数学时间达到一个小时。学校规定90分及90分以上记为优秀,75分及75分以上记为达标,75分以下记为未达标.
(1)分别求出A、B两组学生的平均分、并估计全班的数学平均分;
(2)现在从成绩优秀的学生中任意抽取2人,求这两人恰好都来自B组的概率;
(3)根据成绩得到如下列联表:
①直接写出表中的值;
②判断是否有的把握认为“数学成绩达标与否”与“每天学习数学时间能否达到一小时”有关.
参考公式与临界值表:K2=.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知直线与圆O:相切.
(1)直线l过点(2,1)且截圆O所得的弦长为,求直线l的方程;
(2)已知直线y=3与圆O交于A,B两点,P是圆上异于A,B的任意一点,且直线AP,BP与y轴相交于M,N点.判断点M、N的纵坐标之积是否为定值?若是,求出该定值;若不是,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com