精英家教网 > 高中数学 > 题目详情
已知f(x)的图象关于原点对称,且x>0时,f(x)=-x2+1,则x<0时,f(x)=(  )
A、-x2+1
B、-x2-1
C、x2+1
D、x2-1
考点:函数奇偶性的性质
专题:计算题,函数的性质及应用
分析:由题意可知f(x)是奇函数,又由x>0时,f(x)=-x2+1,可得x<0时,f(x)=x2-1.
解答: 解:∵f(x)的图象关于原点对称,
∴f(x)是奇函数,
又∵当x>0时,f(x)=-x2+1,
∴x<0时,f(x)=x2-1,
故选D.
点评:本题考查了函数的奇偶性的应用,本题表达式是多项式,可以直接写出即可,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=
b
|x|-a
(a>0,b>0)
的图象形如汉字“囧”,故称其为“囧函数”.给出下列五个命题:
①“囧函数”在在(0,+∞)上单调递增;      
②“囧函数”的值域为R;
③“囧函数”有两个零点;                 
④“囧函数”的图象关于y轴对称;
⑤“囧函数”的图象与直线y=kx+m(k≠0)至少有一个交点.
其中正确的结论是:
 
.(写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

等比数列{an}中,a1=1,公比q≠±1,若am=a1•a2•a3•a4•a5•a6,则m的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

用单调性定义证明:函数f(x)=3x+x3在(-∞,+∞)上是增函数(参考公式:a3-b3=(a-b)(a2+ab+b2))

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}满足a3=5,a10=-9
(1)求{an}的通项公式;
(2)设Sn是数列的前n项和,求Sn的最大值及当时n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在四边形ABCD中,∠ADB=∠BCD=75°,∠ACB=∠BDC=45°,DC=
3
,求:
(1)AB的长
(2)四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

“x2<1”是“x<1”成立的(  )
A、充分必要条件
B、必要不充分条件
C、充分不必要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,anan-1=an-1+(-1)n(n≥2,n∈N*),则
a3
a5
的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆的中心在坐标原点,对称轴是坐标轴,且经过点A(-3,0),B(0,2
2
),则椭圆的标准方程是(  )
A、
x2
9
+
y2
8
=1
B、
x2
8
+
y2
9
=1
C、
x2
3
+
y2
2
2
=1
D、
y2
3
+
x2
2
2
=1

查看答案和解析>>

同步练习册答案