【题目】△ABC的顶点A的坐标为(1,4),∠B,∠C的平分线所在直线方程分别为x-2y=0和x+y-1=0,求BC所在直线的方程.
【答案】4x+17y+12=0.
【解析】
分别求得A关于两条角平分线的对称点,由轴对称性质可知两个对称点都在BC直线上,即过两个对称点的直线方程为直线BC的方程。
设A关于直线x-2y=0的对称点为点A′(x1,y1),
则根据几何性质,它们应该满足的关系有:两点的中点在直线x-2y=0上.
两条直线连线垂直于直线x-2y=0.
列出式子即为:=0和·=-1,
解这两个式子,得x1=,y1=.
设A关于直线x+y-1=0的对称点为点A″(x2,y2),
同理可求得x2=-3,y2=0.
由几何性质,点A′和点A″应该都在BC所在直线上.应用直线方程的两点式容易求得这条直线的方程为4x+17y+12=0.
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点到准线的距离为,直线与抛物线交于两点,过这两点分别作抛物线的切线,且这两条切线相交于点.
(1)若的坐标为,求的值;
(2)设线段的中点为,点的坐标为,过的直线与线段为直径的圆相切,切点为,且直线与抛物线交于两点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱柱中, 平面, , , 为的中点.
(1)求四棱锥的体积;
(2)求证: ;
(3)判断线段上是否存在一点 (与点不重合),使得四点共面? (结论不要求证明)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:x2+y2-4x-14y+45=0及点Q(-2,3).
(1)若点P(m,m+1)在圆C上,求直线PQ的斜率.
(2)若M是圆C上任一点,求|MQ|的取值范围.
(3)若点N(a,b)在圆C上,求的最大值与最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知极点为直角坐标系的原点,极轴为x轴正半轴且单位长度相同的极坐标系中曲线C1:ρ=1, (t为参数).
(Ⅰ)求曲线C1上的点到曲线C2距离的最小值;
(Ⅱ)若把C1上各点的横坐标都扩大为原来的2倍,纵坐标扩大为原来的 倍,得到曲线 .设P(﹣1,1),曲线C2与 交于A,B两点,求|PA|+|PB|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),┄,[80,90],并整理得到如下频率分布直方图:
(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;
(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;
(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点 ,点P是圆 上的任意一点,设Q为该圆的圆心,并且线段PA的垂直平分线与直线PQ交于点E.
(1)求点E的轨迹方程;
(2)已知M,N两点的坐标分别为(﹣2,0),(2,0),点T是直线x=4上的一个动点,且直线TM,TN分别交(1)中点E的轨迹于C,D两点(M,N,C,D四点互不相同),证明:直线CD恒过一定点,并求出该定点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知各项都为正数的数列{an}满足a1=1,an2﹣(2an﹣1﹣1)an﹣2an﹣1=0(n≥2,n∈N*),数列{bn}满足b1=1,b1+ b2+ b3+…+ bn=bn+1﹣1(n∈N*)
(Ⅰ)求{an},{bn}的通项公式;
(Ⅱ)求数列{anbn}的前n项和为Tn .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com