精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆AC的上顶点,过A的直线lC交于另一点B,与x轴交于点DO点为坐标原点.

1)若,求l的方程;

2)已知PAB的中点,y轴上是否存在定点Q,使得?若存在,求Q的坐标;若不存在,说明理由.

【答案】12)存在

【解析】

1)对直线的斜率进行讨论,当斜率不存在时显然不满足,当直线斜率存在时,设出直线方程,代入弦长公式求出斜率的值,即可得答案;

2)利用中点坐标公式求得,根据求出,的方程,即可得到定点坐标.

1)①当直线的斜率不存在时,,舍去;

②当直线的斜率存在时,

联立方程,化简得

解得,所以

所以,化简得

解得(舍去),即

所以.

2)①,由(1)得

所以,又因为,所以,所以

所以

即存在定点满足条件.

,则OP重合,也满足条件

综上,存在满足条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,某居民区内有一直角梯形区域百米,百米.该区域内原有道路,现新修一条直道(宽度忽略不计),点在道路上(异于两点),.

1)用表示直道的长度;

2)计划在区域内修建健身广场,在区域内种植花草.已知修建健身广场的成本为每平方百米4万元,种植花草的成本为每平方百米2万元,新建道路的成本为每百米4万元,求以上三项费用总和的最小值(单位:万元).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C,过点且互相垂直的两条动直线与抛物线C分别交于PQMN.

1)求四边形面积的取值范围;

2)记线段的中点分别为EF,求证:直线恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列的公差为,前n项和为,且满足____________.(从①);②成等比数列;③,这三个条件中任选两个补充到题干中的横线位置,并根据你的选择解决问题)

I)求

(Ⅱ)若,求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国际上通常用年龄中位数指标作为划分国家或地区人口年龄构成的标准:年龄中位数在20岁以下为年轻型人口;年龄中位数在2030岁为成年型人口;年龄中位数在30岁以上为老龄型人口.

如图反映了我国全面放开二孩政策对我国人口年龄中位数的影响.据此,对我国人口年龄构成的类型做出如下判断:①建国以来直至2000年为成年型人口;②从2010年至2020年为老龄型人口;③放开二孩政策之后我国仍为老龄型人口.其中正确的是(

A.②③B.①③C.D.①②

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体ABCDA1B1C1D1的棱长为a,线段B1D1上有两个动点EF,且EFa,以下结论正确的有(  )

A.ACBE

B.ABEF的距离为定值

C.三棱锥ABEF的体积是正方体ABCDA1B1C1D1体积的

D.异面直线AEBF所成的角为定值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥P-ABCD中,底面ABCD为菱形,且,侧面PAD是正三角形,其所在的平面垂直于底面ABCD,点GAD的中点.

1)求证:BGPAD

2EBC的中点,在PC上求一点F,使得PGDEF.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校名学生参加军事冬令营活动,活动期间各自扮演一名角色进行分组游戏,角色按级别从小到大共种,分别为士兵、排长、连长、营长、团长、旅长、师长、军长和司令.游戏分组有两种方式,可以人一组或者人一组.如果人一组,则必须角色相同;如果人一组,则人角色相同或者人为级别连续的个不同角色.已知这名学生扮演的角色有名士兵和名司令,其余角色各人,现在新加入名学生,将这名学生分成组进行游戏,则新加入的学生可以扮演的角色的种数为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C)的离心率为,且过点.

1)求椭圆C的方程;

2)过坐标原点的直线与椭圆交于MN两点,过点M作圆的一条切线,交椭圆于另一点P,连接,证明:.

查看答案和解析>>

同步练习册答案