精英家教网 > 高中数学 > 题目详情

【题目】已知是抛物线上的一点,为抛物线的焦点,定点,则的外接圆的面积为_____________

【答案】

【解析】

代入P的坐标,由抛物线方程可得p,求得焦点坐标,由两点距离公式可得MPMFPF,再由余弦定理可得cos∠MPF,由同角平方关系可得sin∠MPF,由正弦定理可得△MPF的外接圆的半径,进而得到所求圆的面积.

P(4,4)是抛物线Cy2=2px上的一点,

可得16=8p

解得p=2,

即抛物线的方程为y2=4x

F(1,0),M(﹣1,4),P(4,4),可得

MP=5,PF=5,MF=2

cos∠MPF

sin∠MPF

设△MPF的外接圆的半径为R

2R

解得R

可得△MPF的外接圆的面积为π

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,且过点,椭圆的离心率为,点为抛物线与椭圆的一个公共点,且.

(1)求椭圆的方程;

(2)过椭圆内一点的直线的斜率为,且与椭圆交于两点,设直线为坐标原点)的斜率分别为,若对任意,存在实数,使得,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为2。

(1)求椭圆C的方程;

(2)椭圆C上是否存在一点P,使得当l绕F转到某一位置时,有成立?若存在,求点P的坐标与直线l的方程;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中, 为正三角形,平面平面 .

(Ⅰ)求证:平面平面

(Ⅱ)求三棱锥的体积;

(Ⅲ)在棱上是否存在点,使得平面?若存在,请确定点的位置并证明;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线的焦点为,已知点为抛物线上的两个动点,且满足.过弦的中点作抛物线准线的垂线,垂足为,则的最大值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学生参加4门学科的学业水平测试,每门得等级的概率都是,该学生各学科等级成绩彼此独立.规定:有一门学科获等级加1分,有两门学科获等级加2分,有三门学科获等级加3分,四门学科全获等级则加5分,记表示该生的加分数, 表示该生获等级的学科门数与未获等级学科门数的差的绝对值.

(1)求的数学期望;

(2)求的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求曲线在原点处的切线方程;

(2)求函数的单调区间及最大值;

(3)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】海关对同时从三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如表所示,工作人员用分层抽样的方法从这些商品中共抽取7件样品进行检测.

地区

数量

200

50

100

1)求这7件样品中来自各地区样品的数量;

2)若在这7件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,游客从某旅游景区的景点处下山至处有两种路径,一种是从沿直线步行到,另一种是先从沿索道乘缆车到,然后从沿直线步行到.现有甲、乙两位游客从处下山,甲沿匀速步行,速度为.在甲出发后,乙从乘缆车到,在处停留后,再从匀速步行到.假设缆车匀速直线运动的速度为,山路长为,经测量,

1)求索道的长;

2)为使两位游客在处互相等待的时间不超过3分钟,乙步行的速度应该控制在什么范围内?

查看答案和解析>>

同步练习册答案