精英家教网 > 高中数学 > 题目详情
8.求$\frac{\sqrt{3}tan70°+1}{(4co{s}^{2}70°-2)sin70°}$的值:

分析 先化切为弦,再分式的分子、分母同时乘以cos70°,把原式等价转化为$\frac{\sqrt{3}sin70°+cos70°}{cos140°(2sin70°cos70°)}$,再利用三角函数恒等式、二倍角公式、诱导公式能求出结果.

解答 解:$\frac{\sqrt{3}tan70°+1}{(4co{s}^{2}70°-2)sin70°}$
=$\frac{\sqrt{3}•\frac{sin70°}{cos70°}+1}{2cos140°sin70°}$
=$\frac{\sqrt{3}sin70°+cos70°}{cos140°(2sin70°cos70°)}$
=$\frac{2sin(70°+30°)}{cos140°sin140°}$
=$\frac{2sin100°}{\frac{1}{2}sin280°}$
=$\frac{2sin100°}{-\frac{1}{2}sin100°}$
=-4.

点评 本题考查三角函数值的求法,是中档题,解题时要注意化切为弦、三角函数恒等式、二倍角公式、诱导公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.△ABC中,cosB=$\frac{5}{13}$,cosC=$\frac{4}{5}$.(1)求sinA的值;(2)面积S△ABC=$\frac{33}{2}$,求BC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设变量x与y线性相关,且相关系数为0.875,设变量x1=10x,y1=10y,则变量y1与x1的相关系数为(  )
A.0.875B.0.125C.1D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=ln(2x)+2x-a(a∈R).若存在b∈[1,e](e是自然对数的底数),使f(f(b))=b成立,则a的取值范围是(  )
A.[1,e+1]B.[ln2+1,e+ln2+1]C.[e,e+1]D.[ln2,e+ln2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知0≤x≤2π,试探索sinx与cosx的大小关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求以坐标轴为对称轴,一条渐进线方程为x+3y=0,并且过点(3,2)的双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知Rt△AOB的面积为1,O为直角顶点,设向量$\overrightarrow{a}$═$\frac{\overrightarrow{OA}}{|\overrightarrow{OA}|}$,$\overrightarrow{b}$=$\frac{\overrightarrow{OB}}{|\overrightarrow{OB}|}$,$\overrightarrow{OP}$=$\overrightarrow{a}$+2$\overrightarrow{b}$,则$\overrightarrow{PA}$•$\overrightarrow{PB}$的最大值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知实数x,y满足y=x2-x+2(-1≤x≤1),试求$\frac{y+3}{x+2}$的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,半径为R的球O中有一内接圆柱,当圆柱的侧面积最大时,球的体积与该圆柱的体积之比是(  )
A.$\frac{4}{3}$B.$\frac{4\sqrt{2}}{3}$C.$\sqrt{2}$D.$\frac{\sqrt{2}}{3}$

查看答案和解析>>

同步练习册答案