精英家教网 > 高中数学 > 题目详情

【题目】已知函数,若曲线在点处的切线方程是,不等式的解集为非空集合,其中为自然对数的底数.

(Ⅰ)求的解析式,并用表示

(Ⅱ)若任意,不等式恒成立,求实数的取值范围.

【答案】(Ⅰ);(Ⅱ).

【解析】

(Ⅰ)根据不等式的解集可知相应方程的根,利用根与系数的关系求解即可.

(Ⅱ)不等式恒成立转化为,令,根据其导数,分类讨论其最小值,即可求出实数的取值范围.

(Ⅰ)因为

所以,∴

因为,所以为方程的两根,

所以.

(Ⅱ)

因为

由非空集合

又令

上单调递增,且

①当时,恒成立,

即函数上单调递增,

②当时,则,使时,,即,即单调递减,

时,,即,即单调递增.

,∴只须满足

从而,解得

,∴上单调递减,

综上.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在四棱柱中,平面.

(1)证明:.

(2)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】地球海洋面积远远大于陆地面积,随着社会的发展,科技的进步,人类发现海洋不仅拥有巨大的经济利益,还拥有着深远的政治利益.联合国于第63届联合国大会上将每年的68日确定为“世界海洋日”.201968日,某大学的行政主管部门从该大学随机抽取100名大学生进行一次海洋知识测试,并按测试成绩(单位:分)分组如下:第一组[6570),第二组[7075),第二组[7580),第四组[8085),第五组[8590],得到频率分布直方图如下图:

1)求实数的值;

2)若从第四组、第五组的学生中按组用分层抽样的方法抽取6名学生组成中国海洋实地考察小队,出发前,用简单随机抽样方法从6人中抽取2人作为正、副队长,列举出所有的基本事件并求“抽取的2人为不同组”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦点与双曲线的焦点重合,并且经过点.

(Ⅰ)求椭圆C的标准方程;

(II) 设椭圆C短轴的上顶点为P,直线不经过P点且与相交于两点,若直线PA与直线PB的斜率的和为,判断直线是否过定点,若是,求出这个定点,否则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,正确的共有(

因为直线是无限的,所以平面内的一条直线就可以延伸到平面外去;

两个平面有时只相交于一个公共点;

分别在两个相交平面内的两条直线如果相交,则交点只可能在两个平面的交线上;

一条直线与三角形的两边都相交,则这条直线必在三角形所在的平面内;

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高一(1)班参加校生物竞赛学生的成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:

(1)求高一(1)班参加校生物竞赛的人数及分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;

(2)若要从分数在[80,100]之间的学生中任选2人进行某项研究,求至少有1人分数在[90,100]之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某口袋内装有一些除颜色不同之外其他均相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,若红球有21个,则黑球有_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,焦点在轴,离心率为,短轴长为2.

1)求椭圆的标准方程;

2)设,过椭圆左焦点的直线两点,若对满足条件的任意直线,不等式恒成立,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若曲线处的切线的斜率为3,求实数的值;

(2)若函数在区间上存在极小值,求实数的取值范围;

(3)如果的解集中只有一个整数,求实数的取值范围.

查看答案和解析>>

同步练习册答案