分析 以D为原点,DA,DC,DD1所在的直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出平面BD1C1与底面ABCD所成的二面角的大小.
解答 解:∵在正四棱柱ABCD-A1B1C1D1中,CC1⊥底面ABCD,
∴BC是BC1在平面ABCD上的射影,
∴∠C1BC是直线C1B与底面ABCD所成的角,
∵C1B与底面ABCD所成的角的大小为arctan2,∴∠C1BC=arctan2,
在Rt△C1BC中,C1C=BC•tan∠B1BC=2,
以D为原点,DA,DC,DD1所在的直线分别为x,y,z轴,
建立空间直角坐标系,如图,
∵D1D⊥平面ABCD,∴$\overrightarrow{D{D}_{1}}$=$\overrightarrow{m}$=(0,0,2)是平面ABCD的一个法向量,
B(1,1,0),D1(0,0,1),C1(0,1,2),
$\overrightarrow{B{D}_{1}}$=(-1,-1,2),$\overrightarrow{B{C}_{1}}$=(-1,0,2),
设$\overrightarrow{n}$=(x,y,z)是平面BD1C1的一个法向量,
∴$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{B{D}_{1}}=x+y-2z=0}\\{\overrightarrow{n}•\overrightarrow{B{C}_{1}}=x-2z=0}\end{array}\right.$,取z=1,得$\overrightarrow{n}$=(2,0,1),
设平面BD1C1与底面ABCD所成的二面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{2}{2\sqrt{5}}$=$\frac{\sqrt{5}}{5}$,
∴θ=arccos$\frac{\sqrt{5}}{5}$.
点评 本题考查二面角的大小的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:选择题
A. | 28 | B. | 30 | C. | 36 | D. | 20 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{11}{2}$ | B. | 6 | C. | $\frac{13}{2}$ | D. | 7 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $56+16\sqrt{2}$ | B. | 56+8$\sqrt{2}$ | C. | 64 | D. | 72 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-1,+∞) | B. | (-1,1] | C. | (-∞,1) | D. | [-1,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com