精英家教网 > 高中数学 > 题目详情
20.求圆心在直线x+y=0上,且过直线x-2y+4=0与圆x2+y2+2x+2y-8=0的交点的圆的方程.

分析 先求得直线x-2y+4=0与圆x2+y2+2x+2y-8=0的交点,设所求圆心坐标为(a,-a),则(a,-a)到两圆交点(-4,0)和(0,2)的距离相等,求得a的值,可得圆心和半径,从而求得要求的圆的方程.

解答 解:将直线与圆的方程联立得方程组$\left\{{\begin{array}{l}{x-2y+4=0}\\{{x^2}+{y^2}+2x+4y-8=0}\end{array}}\right.$,消去x得到y2-2y=0,解得:y=0或y=2,
两圆的交点坐标A(-4,0),B(0,2).
因所求圆心在直线x+y=0上,故设所求圆心坐标为(a,-a),则(a,-a)到两圆交点(-4,0)和(0,2)的距离相等,
故有:$\sqrt{{(a+4)}^{2}{+(-a)}^{2}}$=$\sqrt{{(a-0)}^{2}{+(-a-2)}^{2}}$,
即4a=-12,∴a=-3,从而圆心坐标是(-3,3),
又$r=\sqrt{{{(-4+3)}^2}+{3^2}}=\sqrt{10}$,故所求圆的方程为(x+3)2+(y-3)2=10.

点评 本题主要考查求两曲线的交点,求圆的标准方程,求出圆心和半径,是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.某分公司经销某种品牌的产品,每件产品的成本为3元,并且每件产品需向总公司交3元的管理费,预计当每件产品的售价为x(9≤x≤11)元时,一年的销售量为(12-x)2万件.
(1)求分公司一年的利润y(万元)与每件产品的售价的函数关系式;
(2)当每件产品的售价为多少元时,分公司一年的利润y最大,并求出y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图所示的三个几何体,一个是长方体,一个是直三棱柱,一个是过圆柱上、下底面圆心切下圆柱的四分之一部分,若这三个几何体的正视图和俯视图是相同的正方形,求他们的表面积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设双曲线C经过点(1,3),且与$\frac{{y}^{2}}{3}$-x2=1具有相同渐近线,则C的方程为$\frac{y^2}{6}-\frac{x^2}{2}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.过点P(2,3)并且在两坐标轴上截距相等的直线方程为(  )
A.2x-3y=0B.3x-2y=0或x+y-5=0
C.x+y-5=0D.2x-3y=0或x+y-5=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,角A,B,C所对的边分别是a,b,c,若a=3,b=4,∠C=60?,则边c的值等于$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.点P在椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1上,点P到直线3x-4y=24的最大距离和最小距离为$\frac{12(2+\sqrt{2})}{5}$;$\frac{12(2-\sqrt{2})}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知抛物线y2=2px(p>0)的焦点F与双曲线$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1的一个焦点重合,直线y=x-4与抛物线交于A,B两点.
(1)求p的值;
(2)求弦|AB|的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知命题P的逆命题是“若a、b都不是偶数,则ab不是偶数”,则命题P的逆否命题是(  )
A.若a、b都是偶数,则ab是偶数
B.若ab是偶数,则a、b都是偶数
C.若a、b至少有一个是偶数,则ab是偶数
D.若ab是偶数,则a、b至少有一个是偶数

查看答案和解析>>

同步练习册答案