精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)讨论函数的单调性;

(2)判断函数能否有3个零点?若能,求出的取值范围;若不能,请说明理由.

【答案】(1)见解析;(2)不可能有个零点;说明见解析

【解析】

1)求导后,根据导函数零点的分布情况在不同的取值范围情况下讨论导函数的正负,从而得到函数的单调性;(2)采用反证法,假设有个零点,可知需满足;当时,可得极大值,从而知不可能有个零点;当时,可得极大值,将其看做关于的函数,通过导数可判断出,从而可知不可能有个零点;可知假设错误,即不可能有个零点.

(1)由题意知:函数定义域为

①若,则

时,,则为减函数

时,,则为增函数

②若

时,,则为增函数

时,,则为减函数

③若,则,故上增函数

④若

时,,则为增函数

时,,则为减函数

(2)若函数个零点,由(1)可知,必有

①若,由(1)可知处取得极大值,在处取得极小值

此时不可能有个零点

②若,由(1)可知处取得极大值,在处取得极小值

,即 上单调递增

上单调递减

时,

此时不可能有个零点

综上所述:函数不可能有个零点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】有甲、乙两家公司都需要招聘求职者,这两家公司的聘用信息如下:

甲公司

乙公司

职位

A

B

C

D

职位

A

B

C

D

月薪/千元

5

6

7

8

月薪/千元

4

6

8

10

获得相应职位概率

0.4

0.3

0.2

0.1

获得相应职位概率

0.4

0.3

0.2

0.1

(1)若两人分别去应聘甲、乙两家公司的C职位,记这两人被甲、乙两家公司的C职位录用的人数和为,求的分布列;

(2)根据甲、乙两家公司的聘用信息,如果你是该求职者,你会选择哪一家公司?说明理由。

(3)若小王和小李分别被甲、乙两家公司录用,求小王月薪高于小李的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一只药用昆虫的产卵数与一定范围内与温度有关, 现收集了该种药用昆虫的6组观测数据如下表:

温度/℃

21

23

24

27

29

32

产卵数/

6

11

20

27

57

77

(1)若用线性回归模型,求关于的回归方程=x+(精确到0.1);

(2)若用非线性回归模型求的回归方程为 且相关指数

( i )试与 (1)中的线性回归模型相比,用 说明哪种模型的拟合效果更好.

( ii )用拟合效果好的模型预测温度为时该种药用昆虫的产卵数(结果取整数).

附:一组数据(x1,y1), (x2,y2), ...,(xn,yn), 其回归直线=x+的斜率和截距的最小二乘估计为,相关指数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知椭圆的焦距为,以椭圆C的右顶点A为圆心的圆与直线相交于PQ两点,且

(I)求椭圆C的标准方程和圆A的方程。

(II)不过原点的直线l与椭圆C交于MN两点,已知直线OMlON的斜率成等比数列,记以线段OM,线段ON为直径的圆的面积分别为的值是否为定值?若是,求出此值:若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

1)当时,解不等式

2)若函数的值域为,求的取值范围;

3)若关于的方程的解集中恰好只有一个元素,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】剪刀、石头、布的游戏规则是:双方齐喊口令,然后同时出拳,握紧的拳头代表石头”,“食指和中指伸出代表剪刀,五指伸开代表”。“ 石头剪刀”, “剪刀”, “石头,若所出拳相同则为和局。现甲乙两人通过剪刀、石头、布进行比赛。

(1)设甲乙两人每局都随机出剪刀”、“石头”、“中的某一个,求甲胜乙的概率;

(2)最近中国科学家在网上发布了剪刀、石头、布的致胜策略,引起了甲的关注,据甲认真观察,乙有以下出拳习惯:①第一局不出剪刀”; ②连续两局的出拳一定不一样,即如本局出剪刀,则下局出石头”、“中的一个。假设甲的分析是正确的,甲据此分析出拳,保证每局都不输给乙,在最多5局的比赛中,谁胜的局数多,谁获胜。游戏结束的条件是:一方胜3局或赛满5局,用表示游戏结束时的游戏局数,求的分布列和期望。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】要了解全校学生的体重情况,请你设计一个调查方案,并实施调查,完成一份统计调查分析报告

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂家拟举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)万件与年促销费用万元()满足为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).

(1)将该产品的年利润万元表示为年促销费用万元的函数;

(2)该厂家年促销费用投入多少万元时,厂家的利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为偶函数,函数为奇函数。对任意实数x恒成立.

1)求函数

2)设,若对于恒成立,求实数m的取值范围;

3)对于(2)中的函数,若方程没有实数解,实数m的取值范围.

查看答案和解析>>

同步练习册答案