【题目】某校高三学生体检后,为了解高三学生的视力情况,该校从高三六个班的300名学生中以班为单位(每班学生50人),每班按随机抽样方法抽取了8名学生的视力数据.其中高三(1)班抽取的8名学生的视力数据与人数见下表:
视力数据 | 4.0 | 4.1 | 4.2 | 4.3 | 4.4 | 4.5 | 4.6 | 4.7 | 4.8 | 4.9 | 5.0 | 5.1 | 5.2 | 5.3 |
人数 | 2 | 2 | 2 | 1 | 1 |
(1)用上述样本数据估计高三(1)班学生视力的平均值;
(2)已知其余五个班学生视力的平均值分别为4.3、4.4、4.5、4.6、4.8.若从这六个班中任意抽取两个班学生视力的平均值作比较,求抽取的两个班学生视力的平均值之差的绝对值不小于0.2的概率.
【答案】(1)4.7;(2).
【解析】
试题分析:(1)平均数与一组数据里的每个数据都有关系,;(2)古典概型的概率问题,关键是正确找出基本事件总数和所求事件包含的基本事件数,然后利用古典概型的概率计算公式计算;(3)当基本事件总数较少时,用列举法把所有的基本事件一一列举出来,要做到不重不漏,有时可借助列表,树状图列举,当基本事件总数较多时,注意去分排列与组合;(4)注意判断是古典概型还是几何概型,基本事件前者是有限的,后者是无限的,两者都是等可能性.
试题解析:(1)高三文科(1)班抽取的8名学生视力的平均值为
.
据此估计高三文科(1)班学生视力的平均值约为. 3分
(2)因为高三文科六个班学生视力的平均值分别为、、、、、,
所以任意抽取两个文科班学生视力的平均值数对有,,,,,,,,,,,,,,,共15种情形. 7分
其中抽取的两个班学生视力的平均值之差的绝对值不小于的有,,,,,,,,,,共10种. 10分
所以抽取的两个班学生视力的平均值之差的绝对值不小于的概率为. 12分
科目:高中数学 来源: 题型:
【题目】从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:
质量指标值分组 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125) |
频数 | 6 | 26 | 38 | 22 | 8 |
(I)在答题卡上作出这些数据的频率分布直方图:
(II)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);
(III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着我国经济的飞速发展,人们的生活水平也同步上升,许许多多的家庭对于资金的管理都有不同的方式。最新调查表明,人们对于投资理财的兴趣逐步提高。某投资理财公司做了大量的数据调查,调查显示两种产品投资收益如下:
①投资产品的收益与投资额的算术平方根成正比;
②投资产品的收益与投资额成正比.
公司提供了投资1万元时两种产品的收益,分别是0.4万元和0.2万元。
(1) 分别求出产品的收益、产品的收益与投资额的函数关系式;
(2) 假如现在你有10万元的资金全部用于投资理财,你该如何分配资金,才能让你的收益最大?最大收益是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“中国式过马路”存在很大的交通安全隐患.某调查机构为了解路人对“中国式过马路”的态度是否与性别有关,从马路旁随机抽取30名路人进行了问卷调查,得到了如下列联表:
项目 | 男性 | 女性 | 总计 |
反感 | 10 | ||
不反感 | 8 | ||
总计 | 30 |
已知在这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是.
(1)请将上面的列联表补充完整(直接写结果,不需要写求解过程),并据此资料分析反感“中国式过马路”与性别是否有关?
(2)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列和数学期望.
附:K2=
.
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在研究塞卡病毒(Zika virus)某种疫苗的过程中,为了研究小白鼠连续接种该种疫苗后出现症状的情况,做接种试验,试验设计每天接种一次,连续接种3天为一个接种周期.已知小白鼠接种后当天出现症状的概率为,假设每次接种后当天是否出现症状与上次接种无关.
(1)若出现症状即停止试验,求试验至多持续一个接种周期的概率;
(2)若在一个接种周期内出现2次货3次症状,则这个接种周期结束后终止试验,试验至多持续3个周期,设接种试验持续的接种周期数为,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)
围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:元)。
(Ⅰ)将y表示为x的函数;
(Ⅱ)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某金店用一杆不准确的天平(两边臂不等长)称黄金,某顾客要购买黄金,售货员先将的砝码放在左盘,将黄金放于右盘使之平衡后给顾客;然后又将的砝码放入右盘,将另一黄金放于左盘使之平衡后又给顾客,则顾客实际所得黄金( )
A. 大于B. 小于C. 大于等于D. 小于等于
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】20世纪30年代,里克特(C.F.Richter)制定了一种表明地震能量大小的尺度,就是使用测震仪地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大,这就是我们常说的里氏震级M,其计算公式为其中,A是被测量地震的最大振幅,是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际的距离造成的偏差),众所周知,5级地震已经比较明显,计算8级地震的最大振幅是5级地震的最大振幅的______倍.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com