精英家教网 > 高中数学 > 题目详情
设函数f(x)=msinx+cosx(x∈R)的图象经过点(
π
2
,1)

(1)求f(x)的解析式,并求函数的最小正周期.
(2)若f(α+
π
4
)=
3
2
5
α∈(0,
π
2
)
,求f(2α-
π
4
)
的值.
分析:(1)由题意可得m=1,进而可得函数解析式,可得周期;(2)由(1)化简已知可得cosα=
3
5
,进而可得sinα的值,而要求的值可化为2
2
sinαcosα,代值即可.
解答:解:(1)∵函数f(x)=msinx+cosx(x∈R)的图象经过点(
π
2
,1)

msin
π
2
+cos
π
2
=1
,∴m=1….(2分)
f(x)=sinx+cosx=
2
sin(x+
π
4
)
….(3分)
∴函数的最小正周期T=2π…(4分)
(2)由(1)知:f(α+
π
4
)=
2
sin(α+
π
4
+
π
4
)=
2
sin(α+
π
2
)=
2
cosα=
3
2
5
…(6分)
cosα=
3
5
,又因为α∈(0,
π
2
)
sinα=
1-cos2α
=
4
5
…(9分)
f(2α-
π
4
)=
2
sin(2α-
π
4
+
π
4
)=
2
sin2α=2
2
sinαcosα=
24
2
25
…(12分)
点评:本题为三角函数的运算,涉及两角和与差的公式以及三角函数的图象,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Msin(ωx+φ)(其中M>0,ω>0,|φ|<
π
2
)的图象如图所示.
(1)求函数f(x)的表达式;
(2)设α∈(
π
6
,  
3
),  β∈(-
6
,-
π
3
),  f(
α
2
)=
3
5
,  f(
β
2
)=-
4
5
,求cos2(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2013+x,x∈R,若当θ∈[0 , 
π2
)
时,f(msinθ)+f(1-m)>0恒成立,则m的取值范围是
(-∞,1)
(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3+x,x∈R.若当0<θ<
π
2
时,不等式f(msinθ)+f(1-m)>0恒成立,则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泸州一模)已知命题p:夹角为m的单位向量a,b使|a-b|>l,命题q:函数f(x)=msin(mx)的导函数为f′(x),若?xo∈R,f′(xo)≥
4π25
.设符合p∧q为真的实数m的取值的集合为A.
(I)求集合A;
(Ⅱ)若B={x∈R|x2=πa},且B∩A=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设?>0,m>0,若函数f(x)=msin
ωx
2
cos
ωx
2
在区间(-
π
3
π
4
)
上单调递增,则ω的取值范围是(  )

查看答案和解析>>

同步练习册答案