2£®ÔÚƽÃæÖ±½Ç×ø±êϵxOyÄÚ£¬Ö±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}x=2-\frac{3}{5}t\\ y=\frac{4}{5}\end{array}\right.£¨t$Ϊ²ÎÊý£©£®ÒÔOΪ¼«µã¡¢xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2sin¦È£®
£¨¢ñ£©½«ÇúÏßCµÄ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÉèÖ±ÏßlÓëxÖá½»ÓÚµãM£¬µãNÔÚÇúÏßCÉÏ£¬ÇóM£¬NÁ½µã¼ä¾àÀë|MN|µÄ×îСֵ£®

·ÖÎö £¨¢ñ£©ÓɦÑ2=2¦Ñsin¦È£¬ÄÜÇó³öÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£®
£¨¢ò£©Ö±ÏßlÓëxÖá½»ÓÚµãM£¨2£¬0£©£¬ÇúÏßCÊÇÔ²ÐÄΪC£¨0£¬1£©£¬°ë¾¶r=1µÄÔ²£¬´Ó¶øÄÜÇó³ö|MC|=$\sqrt{5}$£¬M£¬NÁ½µã¼ä¾àÀë|MN|µÄ×îСֵΪ|MC|-r£®

½â´ð ½â£º£¨¢ñ£©¡ßÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2sin¦È£¬
¡à¦Ñ2=2¦Ñsin¦È£¬
¡àÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌΪx2+y2=2y£¬¼´x2+£¨y-1£©2=1£®
£¨¢ò£©¡ßÖ±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}x=2-\frac{3}{5}t\\ y=\frac{4}{5}\end{array}\right.£¨t$Ϊ²ÎÊý£©£¬
¡àÖ±ÏßlÓëxÖá½»ÓÚµãM£¨2£¬0£©£¬
ÇúÏßCÊÇÔ²ÐÄΪC£¨0£¬1£©£¬°ë¾¶r=1µÄÔ²£¬
|MC|=$\sqrt{{2}^{2}+{1}^{2}}$=$\sqrt{5}$£¬
¡ßµãNÔÚÇúÏßCÉÏ£¬
¡àM£¬NÁ½µã¼ä¾àÀë|MN|µÄ×îСֵΪ£º|MC|-r=$\sqrt{5}-1$£®

µãÆÀ ±¾Ì⿼²é¼«×ø±ê·½³ÌÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯£¬¿¼²éÁ½µã¼ä¾àÀëµÄ×îСֵµÄÇ󷨣¬ÊÇ»ù´¡Ì⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÁ½µã¼ä¾àÀ빫ʽµÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÏÂÁÐÃüÌâÖв»ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®logab•logbc•logca=1£¨a£¬b£¬c¾ùΪ²»µÈÓÚ1µÄÕýÊý£©
B£®Èôxlog34=1£¬Ôò${4^x}+{4^{-x}}=\frac{10}{3}$
C£®º¯Êýf£¨x£©=lnxÂú×ãf£¨a+b£©=f£¨a£©•f£¨b£©£¨a£¬b£¾0£©
D£®º¯Êýf£¨x£©=lnxÂú×ãf£¨a•b£©=f£¨a£©+f£¨b£©£¨a£¬b£¾0£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®Ö±Ïßy=-xsin¦È+1µÄÇãб½ÇµÄÈ¡Öµ·¶Î§ÊÇ[0£¬$\frac{¦Ð}{4}$]¡È[$\frac{3¦Ð}{4}$£¬¦Ð£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®½â²»µÈʽ×飺$\left\{\begin{array}{l}{2£¨x-6£©£¾3-x}\\{\frac{2x-1}{3}-\frac{5x+1}{2}¡Ü1}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®±È½Ïloga3Óëloga10£¨a£¾0ÇÒa¡Ù1£©µÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖª£¬ÔÚ¡÷ABCÖУ¬¡ÏC=90¡ã£¬BC=6£¬AC=8£¬µãM¡¢NÔÚ¡÷ABCµÄ±ßÉÏ£¬½«¡÷ABCÑØÖ±ÏßMN¶ÔÕÛºó£¬ËüµÄÒ»¸ö¶¥µãÕýºÃÂäÔÚ¶Ô±ßÉÏ£¬ÇÒÕÛºÛMN½Ø¡÷ABCËù³ÉµÄСÈý½ÇÐΣ¨¼´¶ÔÕÛºóµÄÖصþ²¿·Ö£©Óë¡÷ABCÏàËÆ£®ÇëÔÚÏÂÁÐͼ£¨²»Ò»¶¨¶¼Ó㬲»¹»¿ÉÌí£©Öзֱ𻭳öÕÛºÛMN¸÷ÖÖ¿ÉÄܵÄλÖ㬲¢ËµÃ÷»­·¨¼°Ö±½Óд³öÕۺ۵ij¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÔÚ¼«×ø±êϵÏ£¬¹ýÖ±ÏߦÑcos¦È+¦Ñsin¦È=2$\sqrt{2}$ÉÏÈÎÒâÒ»µãM£¬×÷ÇúÏߦÑ=1µÄÁ½ÌõÇÐÏߣ¬ÔòÕâÁ½ÌõÇÐÏߵļнǵÄ×î´óֵΪ£¨¡¡¡¡£©
A£®$\frac{¦Ð}{6}$B£®$\frac{¦Ð}{3}$C£®$\frac{¦Ð}{2}$D£®$\frac{2¦Ð}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®½¨ÔìÒ»¸öÈÝ»ýΪ2m3£¬ÉîΪ2mµÄ³¤·½ÌåÎÞ¸ÇË®³Ø£¬Èç¹û³Øµ×ºÍ³Ø±ÚµÄÔì¼Ûÿƽ·½Ã×·Ö±ðΪ120ÔªºÍ80Ôª£¬ÔòË®³ØµÄ×îµÍÔì¼ÛΪ£¨¡¡¡¡£©
A£®660B£®760C£®670D£®680

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®m=-1ÊÇÖ±Ïßmx+£¨2m-1£©y+2=0ÓëÖ±Ïß3x+my+3=0´¹Ö±µÄ³ä·Ö²»±ØÒªÌõ¼þ£®£¨Ìî³ä·Ö²»±ØÒªÌõ¼þ£¬±ØÒª²»³ä·ÖÌõ¼þ£¬³äÒªÌõ¼þ£¬¼È²»³ä·ÖÌõ¼þ£¬Ò²²»±ØÒªÌõ¼þÆäÖÐÖ®Ò»£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸