精英家教网 > 高中数学 > 题目详情
5.已知一次函数y=x+k+2,当0≤x≤4时,恒有y>2k,求k的取值范围.

分析 求出一次函数的值域,由题意可得2k小于函数的最小值,解不等式即可得到k的范围.

解答 解:当0≤x≤4时,一次函数y=x+k+2的值域为[k+2,k+6],
由题意可得2k<y的最小值.
即有2k<k+2,
解得k<2.
则k的范围是(-∞,2).

点评 本题考查不等式的恒成立问题,主要考查一次函数的值域,考查不等式的解法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.对于二元函数有如下定义:对于平面点集D,若按照某种对应法则f使得D中的每一点P(x,y)都有唯一的实数z与之对应,则称f为在D上的二元函数.D称为二元函数的定义域,全体函数值构成的集合称为二元函数的值域,使得f(x,y)=0成立的实数对(x,y)称为二元函数的“上升点”,若二元函数f(x,y)=3+sin[π+(2x+$\frac{1}{2}$)]-$\frac{2{x}^{2}+16xy+32{y}^{2}+2}{x+4y}$,(x,y)∈D1存在“上升点”,则二元函数h(x,y)=(x+4)2+(y+3)2,(x,y)∈D1的最小值为(  )
A.$\sqrt{13}$B.17C.$\frac{53}{4}$D.$\frac{\sqrt{53}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.过原点作直线l的垂线,垂足为M(3,-4),则直线l的方程为3x-4y-25=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知在△ABC中,b=2c,角A的平分线长m,m=kc,则k的取值范围是k∈(0,$\frac{4}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.化简:
(1)$\sqrt{9-4\sqrt{5}}$;
(2)$\sqrt{{x}^{2}+\frac{1}{{x}^{2}}-2}$(0<x<1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知两点A(3,0),B(0,4),动点P(x,y)在线段AB上运动,则xy(  )
A.无最小值且无最大值B.无最小值但有最大值
C.有最小值且无最大值D.有最小值且有最大值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.化简:
(1)${a}^{\frac{1}{3}}$•${a}^{\frac{3}{4}}$•${a}^{\frac{7}{12}}$;
(2)${a}^{\frac{3}{2}}$•${a}^{\frac{3}{4}}$÷${a}^{\frac{5}{6}}$;
(3)3${a}^{\frac{3}{2}}$•(-a${\;}^{\frac{3}{4}}$)÷9$\sqrt{a}$;
(4)$\frac{{a}^{2}}{\sqrt{a}•\root{3}{{a}^{2}}}$;
(5)${(\frac{{8a}^{-3}}{2{7b}^{6}})}^{-\frac{1}{3}}$;
(6)2x${\;}^{\frac{1}{3}}$($\frac{1}{2}$${x}^{\frac{1}{3}}$-2x${\;}^{\frac{2}{3}}$);
(7)(a${\;}^{\frac{8}{5}}$b${\;}^{-\frac{6}{5}}$)${\;}^{-\frac{1}{2}}$•$\root{5}{{a}^{4}}$÷$\root{5}{{b}^{3}}$(a≠0,b≠0);
(8)(2a${\;}^{\frac{2}{3}}$b${\;}^{\frac{1}{2}}$)(-6a${\;}^{\frac{1}{2}}$b${\;}^{\frac{1}{3}}$)÷(-3a${\;}^{\frac{1}{6}}$b${\;}^{\frac{5}{6}}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若x-y=2,x2+y2=4,则x2008+y2008=22008

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设关于x的一元二次方程anx2-an+1x+1=0(n∈N*)有两根α和β,且满足6α-2αβ+6β=3.
(Ⅰ)试用an表示an+1
(Ⅱ)求证:数列$\left\{{{a_n}-\frac{2}{3}}\right\}$是等比数列;
(Ⅲ)当a1=$\frac{7}{6}$时,求数列{an}的通项公式,并求数列{nan}的前n项和Tn

查看答案和解析>>

同步练习册答案