精英家教网 > 高中数学 > 题目详情
12.已知函数$f(x)={log_a}\frac{1-mx}{x-1}(a>0,a≠1)$是奇函数.
(1)求实数m的值;
(2)是否存在实数p,a,当x∈(p,a-2)时,函数f(x)的值域是(1,+∞).若存在,求出实数p,a;若不存在,说明理由;
(3)令函数g(x)=-ax2+6(x-1)af(x)-5,当x∈[4,5]时,求函数g(x)的最大值.

分析 (1)利用奇函数的定义,即可求实数m的值;
(2)分类讨论,利用当x∈(p,a-2)时,函数f(x)的值域是(1,+∞),可得结论;
(3)g(x)=-ax2+6x+1x∈[4,5]且a>0,a≠1,分类讨论,求出函数g(x)的最大值.

解答 解:(1)∵函数$f(x)={log_a}\frac{1-mx}{x-1}(a>0,a≠1)$是奇函数.
∴f(-x)+f(x)=0解得m=±1
又 m=1时,表达式无意义,所以m=-1…(2分)
(2)由题设知:函数f(x)的定义域为(1,+∞)∪(-∞,-1),
①当p<a-2≤-1时,有0<a<1.此时f(x)为增函数,
其值域为$(1,+∞)知\left\{\begin{array}{l}log\frac{1+n}{n-1}=1\\ a-2=-1\end{array}\right.$(与题设矛盾,无解);…(5分)
②当1≤p≤a-2时,有a>3.此时f(x)为减函数,
其值域为(1,+∞)知$\left\{\begin{array}{l}p=1\\{log_a}\frac{a-1}{a-3}=1,得a=2+\sqrt{3},p=1.\end{array}\right.$…(8分)
符合题意
综上①②:存在这样的实数p,a满足条件,$p=1,a=2+\sqrt{3}$…(9分)
(3)∵g(x)=-ax2+6(x-1)af(x)-5,$f(x)={log_a}\frac{1+x}{x-1}$
∴g(x)=-ax2+6x+1x∈[4,5]且a>0,a≠1
①当$\frac{3}{a}≤4⇒a≥\frac{3}{4},a≠1$时,函数g(x)在[4,5]上单调递减
所以g(x)max=g(4)=-16a+25…(11分)
②当$\frac{3}{a}≥5⇒0<a≤\frac{3}{5}$时,函数g(x)在[4,5]上单调递增
  所以g(x)max=g(5)=-25a+31…(13分)
③当$\frac{3}{4}<a<\frac{3}{5}$时,函数g(x)在$[4,\frac{3}{a}]$上单调递增,在$[\frac{a}{3},5]$上单调递减
所以$g{(x)_{max}}=g(\frac{a}{3})=\frac{9}{a}+1$…15分
综上①②③,$g{(x)_{max}}=\left\{\begin{array}{l}-16a+25\begin{array}{l}{\;}&{a≥\frac{3}{4},a≠1}\end{array}\\ \frac{9}{a}+1\begin{array}{l}{\;}&{\;}&{\;}&{\frac{3}{5}<a<\frac{3}{4}}\end{array}\\-25a+31\begin{array}{l}{\;}&{0<a≤\frac{3}{5}}\end{array}\end{array}\right.$…(16分)

点评 本题考查函数的性质,考查分类讨论的数学思想,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.如图所示,P为?ABCD所在平面外一点,E为AD的中点,F为PC上一点,当PA∥平面EBF时,$\frac{PF}{FC}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.解不等式:$\frac{4}{x-1}$≤x-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.自然状态下的鱼类是一种可再生资源,为了持续利用这一资源,需从宏观上考察其再生能力及捕捞强度对鱼群总量的影响.用xn表示某鱼群在第n年年初的总量且x1>0.不考虑其他因素,设在第n年内鱼群的繁殖量及捕捞量都与xn成正比,死亡量与$x_n^2$成正比,这些比例系数依次为正常数a,b,c
(1)求xn+1与xn的关系式
(2)若每年年初鱼群的总量保持不变,求x1,a,b,c所应满足的条件
(3)设a=2,c=1,为保证对任意x1∈(0,2),都有xn>0,则捕捞强度b的最大允许值是多少?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设命题$p:a∈\{y|y=\sqrt{-{x^2}+2x+8},x∈R\}$,命题q:关于x的方程x2+x-a=0有实根.
(1)若p为真命题,求a的取值范围;
(2)若“p∧q”为假命题,且“p∨q”为真命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知实数x,y满足x2+y2≤1,则
(1)(x+2)2+(y-2)2的最小值是9-4$\sqrt{2}$;
(2)|2x+y-4|+|6-x-3y|的最大值是15.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x+a1nx,其中a为常数,且0<a<4.
(1)用定义证明:函数g(x)=f(x)+$\frac{1}{x}$-alnx在区间(0,1)上单凋递减;
(2)当a=1时,求f(x)在[e,e2](e=2.71828…)上的值域:
(3)若f(x)≥3e+1在区间[e,e2]上有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某公司以25万元购得某项节能产品的生产技术后,再投入100万元购买生产设备,进行该产品的生产加工.已知生产这种产品的成本价为每件20元.经过市场调研发现,该产品的销售单价定在25元到35元之间较为合理,并且该产品的年销售量y(万件)与销售单价x(元)之间的函数关系式为$y=\left\{\begin{array}{l}40-x({25≤x≤30})\\ 25-0.5x({30<x≤35})\end{array}\right.$.
(年获利=年销售收入-生产成本-投资成本)
(1)当销售单价定为28元时,该产品的年销售量为多少?
(2)求该公司第一年的年获利W(万元)与销售单价x(元)之间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损.若是盈利,最大利润是多少?若是亏损,最小亏损是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数y=tan($\frac{π}{3}$-x)的定义域是(  )
A.{x|x∈R,且x≠-$\frac{π}{3}$}B.{x|x∈R,且x≠$\frac{5}{6}π$}
C.{x|x∈R,且x≠kπ+$\frac{5}{6}$π,k∈Z}D.{x|x∈R,且x≠kπ-$\frac{5}{6}$π,k∈Z}

查看答案和解析>>

同步练习册答案