精英家教网 > 高中数学 > 题目详情
已知四棱柱ABCD-A1B1C1D1的底面是边长为1的正方形,侧棱垂直底边ABCD四棱柱,AA1=2,E是侧棱AA1的中点,求
(1)求异面直线BD与B1E所成角的大小;
(2)求四面体AB1D1C的体积.
(1)连接B1D1、D1E,
∵正四棱柱ABCD-A1B1C1D1中,B1BD1D且B1B=D1D
∴四边形BB1D1D是平等四边形
因此B1D1BD,可得∠EB1D1或其补角就是异面直线BD与B1E所成角
∵AA1=2AB=2,∴B1D1=ED1=B1E=
2
,得△B1D1E是等边三角形,∠EB1D1=60°
由此可得,异面直线BD与B1E所成角的大小为60°;
(2)根据题意,得V正四棱柱ABCD-A1B1C1D1=S正方形ABCD×AA1=2
V三棱锥B-ACB1=V三棱A1-AB1D1=V三棱C1-CB1D1=V三棱D-ACD1=
1
3
×
1
2
×1×1×2=
1
3

∴四面体AB1D1C的体积为
V=V正四棱柱ABCD-A1B1C1D1-(V三棱B-ACB1+V三棱A1-AB1D1
+V三棱C1-CB1D1+V三棱D-ACD1)=2-
4
3
=
2
3
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题






(1)证明:
(2)当点为线段的中点时,求异面直线所成角的余弦值;
(3)试问E点在何处时,平面与平面所成二面角的平面角的余弦值为

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在直棱柱中,AA1=2,EF分别是ACAB的中点,过直线EF作棱柱的截面,若截面与平面ABC所成的二面角的大小为,则截面的面积为____________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)在长方体ABCDA1B1C1D1中,AA1=1,AD=DC=.(1)求直线A1CD1C1所成角的正切值;(2)在线段A1C上有一点Q,且C1Q=C1A1,求平面QDC与平面A1DC所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(理)如图,已知正三棱柱ABC-A1B1C1的各条棱长都相等,M是侧棱CC1的中点,则异面直线AB1和BM所成的角的大小是(  )
A.90°B.60°C.45°D.30°

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AB=BC=AA1,∠ABC=90°,点E、F分别是棱AB、BB1的中点,则直线EF和BC1所成的角是(  )
A.45°B.60°C.90°D.120°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正方体ABCD-A1B1C1D1中,设AA1=2.M,N分别是C1D1,CC1的中点.
(1)求异面直线A1N与MC所成角的余弦值;
(2)设P为线段AD上任意一点,求证:MC⊥PN.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图ABCD-A1B1C1D1是正方体,B1E1=D1F1=
A1B1
4
,则BE1与DF1所成的角的余弦值是(  )
A.
15
17
B.
1
2
C.
8
17
D.
3
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

直二面角的棱上有一点,在平面内各有一条射线,则            

查看答案和解析>>

同步练习册答案