精英家教网 > 高中数学 > 题目详情

【题目】已知函数)(…是自然对数的底数).

(1)求单调区间;

(2)讨论在区间内零点的个数.

【答案】(1) 当时, 单调增间为,无减区间;

时, 单调减间为,增区间为

(2) 所以时, 有两个零点;

时, 有三个零点

【解析】试题分析:(1) 求出 讨论 两种情况,分别令得增区间, 得减区间;(2)要求在区间内零点的个数考虑在区间的零点个数,利用导数研究函数的单调性,分三种情况 分别求出零点个数即可.

试题解析:(1)

时, 单调增间为,无减区间;

时, 单调减间为,增区间为

(2)由

先考虑在区间的零点个数

时, 单调增且 有一个零点;

时, 单调递减, 有一个零点;

时, 单调递减, 单调递增.

,所以时, 有一个零点,当时, 有两个零点

时,由

所以时, 有两个零点;

时, 有三个零点.

【方法点晴】本题主要考查的是利用导数研究函数的单调性、利用导数研究函数的零点,属于难题.利用导数研究函数的单调性进一步求函数最值的步骤:①确定函数的定义域;②对求导;③令,解不等式得的范围就是递增区间;令,解不等式得的范围就是递减区间.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】四棱柱ABCD﹣A1B1C1D1的三视图如图所示,则异面直线D1C与AC1所成的角为(
A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列满足: .为数列的前项和.

(Ⅰ)求证:对任意正整数,有

(Ⅱ)设数列的前项和为,求证:对任意,总存在正整数,使得时, .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x<﹣2或3<x≤4},B={x|x2﹣2x﹣15≤0}.求:
(1)A∩B;
(2)若C={x|x≥a},且B∩C=B,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,x∈[2,4].
(1)判断f(x)的单调性,并利用单调性的定义证明:
(2)求f(x)在[2,4]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各组函数是同一函数的是(
A.y= 与y=2
B.y= 与y=x(x≠﹣1)
C.y=|x﹣2|与y=x﹣2(x≥2)
D.y=|x+1|+|x|与y=2x+1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)是定义在R上的奇函数,且f(x)= ,则g[f(﹣7)]=(
A.3
B.﹣3
C.2
D.﹣2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知偶函数y=f(x)(x∈R)在区间[0,3]上单调递增,在区间[3,+∞)上单调递减,且满足f(﹣4)=f(1)=0,则不等式x3f(x)<0的解集是(
A.(﹣4,﹣1)∪(1,4)
B.(﹣∞,﹣4)∪(﹣1,1)∪(3,+∞)
C.(﹣∞,﹣4)∪(﹣1,0)∪(1,4)
D.(﹣4,﹣1)∪(0,1)∪(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=
(1)判断函数f(x)的奇偶性并证明;
(2)证明f(x)是定义域内的增函数;
(3)解不等式f(1﹣m)+f(1﹣m2)>0.

查看答案和解析>>

同步练习册答案