精英家教网 > 高中数学 > 题目详情

【题目】如图,已知四棱锥,侧面是边长为4的等边三角形,底面为菱形,侧面与底面所成的二面角为.

(1)求点到平面的距离;

(2)若的中点,求二面角的正弦值.

【答案】(1)3.(2)

【解析】

试题分析:(1)的中点,则,因为,所以,从而为侧面与底面所成的二面角的平面角,即,再作 ,垂足为点,因此(2)根据垂直关系,建立空间直角坐标系:以为坐标原点,使轴与平行,所在直线分别为轴,求出各点坐标,利用方程组解出各面法向量,最后根据向量数量积求夹角,再由二面角与法向量夹角关系确定结论

试题解析:(1)解:如图,作平面,垂足为点

连接交于点,连接.

.

.

的中点,所以.

由此知,为侧面与底面所成的二面角的平面角,

.

由已知可求得:

即点到平面的距离为3.

(2)如图以为坐标原点,使轴与平行,所在直线分别为轴建立空间直角坐标系,则

.

设平面的法向量为,则,令,则

.

设平面的法向量为,则

,则

.

记二面角

即二面角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司为了准确地把握市场,做好产品生产计划,对过去四年的数据进行整理得到了第年与年销量(单位:万件)之间的关系如下表:

(1)在图中画出表中数据的散点图;

(2)根据散点图选择合适的回归模型拟合的关系(不必说明理由);

(3)建立关于的回归方程,预测第5年的销售量.

附注:参考公式:回归直线的斜率和截距的最小二乘法估计公式分别为:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,底面为正三角形, 底面 的中点.

(1)求证: 平面

(2)求证:平面平面

3)在侧棱上是否存在一点使得三棱锥的体积是若存在,求出的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC. (Ⅰ)求A的大小;
(Ⅱ)求sinB+sinC的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知公差大于零的等差数列{an}的前n项和为Sn , 且满足a3a4=117,a2+a5=22.
(1)求通项an
(2)若数列{bn}满足bn= ,是否存在非零实数c使得{bn}为等差数列?若存在,求出c的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】y=sin2x的图象是由函数y=sin(2x+ )的图象向( )个单位而得到.
A.左平移
B.左平移
C.右平移
D.右平移

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一条生产线上按同样的方式每隔30分钟取一件产品,共取了n件,测得其产品尺寸后,画得其频率分布直方图如图所示,已知尺寸在[15,45)内的频数为46.
(1)该抽样方法是什么方法?
(2)求n的值;
(3)求尺寸在[20,25)内的产品的件数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市出租车的计价标准是:4km以内(含4km)10元,超过4km且不超过18km的部分1.2元/km,超过18km的部分1.8元/km,不计等待时间的费用.
(1)如果某人乘车行驶了10km,他要付多少车费?
(2)试建立车费y(元)与行车里程x(km)的函数关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知⊙C经过点两点,且圆心C在直线上.

(1)求⊙C的方程;

(2)若直线与⊙C总有公共点,求实数的取值范围.

查看答案和解析>>

同步练习册答案