精英家教网 > 高中数学 > 题目详情

中,已知角的对边分别为.向量且向量共线.
(Ⅰ)求的值;
(Ⅱ)若,求的面积的最大值.

(Ⅰ);(Ⅱ).

解析试题分析:(Ⅰ)由向量共线得,,这个等式中既有边又有角,这种等式一般有两种考虑:要么只留边,要么只留角.在本题中这两种方法都行.
思路一、由正弦定理得:,然后用三角函数公式可求出.
思路二、由余弦定理得:,化简得.再由余弦定理可得.
(II)由可求出.这样三角形ABC的面积可表示为.
要求它的最大值,可考虑求出的最大值.因为已知,所以应该用余弦定理,这样可得:,即.从而问题得以解决.
试题解析:(Ⅰ)法一、由得,
所以.
由正弦定理得:


.
.
法二、由向量共线得,.
由余弦定理得:,化简得:

.
所以.                           6分
(II)因为.
由余弦定理得:,即.
.                      12分
考点:1、三角变换;2、正弦定理与余弦定理;3、向量.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某个公园有个池塘,其形状为直角△ABC,∠C=90°,AB=2百米,BC=1百米.

(1)现在准备养一批供游客观赏的鱼,分别在AB、BC、CA上取点D,E,F,如图(1),使得EF‖AB,EF⊥ED,在△DEF喂食,求△DEF 面积S△DEF的最大值;
(2)现在准备新建造一个荷塘,分别在AB,BC,CA上取点D,E,F,如图(2),建造△DEF连廊(不考虑宽度)供游客休憩,且使△DEF为正三角形,求△DEF边长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,满足的夹角为 ,的中点,
(1)若,求向量的夹角的余弦值;.
(2)若,点在边上且,如果,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角所对的边分别为,且满足
(1)若,求的面积;
(2)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

的外接圆半径,角的对边分别是,且
(1)求角和边长
(2)求的最大值及取得最大值时的的值,并判断此时三角形的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

南充市某广场有一块不规则的绿地如图所示,城建部门欲在该地上建造一个底座为三角形的环境标志,小李、小王设计的底座形状分别为,经测量米,米,米,.

(Ⅰ)求的长度;
(Ⅱ)若环境标志的底座每平方米造价为5000元,不考虑其他因素,小李、小王谁的设计使建造费用最低(请说明理由)?最低造价为多少?(

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,角A,B,C的对边分别为a,b,c,已知,且C=120°.
(1)求角A;(2)若a=2,求c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,分别为角所对的边,且,求角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在三角形中,.
⑴ 求角的大小;
⑵ 若,且,求的面积.

查看答案和解析>>

同步练习册答案