精英家教网 > 高中数学 > 题目详情
10.α是第四象限角,$tanα=-\frac{4}{3}$,则sinα等于(  )
A.$\frac{4}{5}$B.$-\frac{4}{5}$C.$\frac{3}{5}$D.$-\frac{3}{5}$

分析 由cosα=$\frac{1}{\sqrt{1+ta{n}^{2}α}}$,先求出cosα,由此能求出sinα.

解答 解:∵α是第四象限角,$tanα=-\frac{4}{3}$,
∴cosα=$\frac{1}{\sqrt{1+ta{n}^{2}α}}$=$\frac{1}{\sqrt{1+\frac{16}{9}}}$=$\frac{3}{5}$,
∴sinα=-$\sqrt{1-co{s}^{2}α}$=-$\sqrt{1-\frac{9}{25}}$=-$\frac{4}{5}$.
故选:B.

点评 本题考查正弦函数的求法,是基础题,解题时要认真审题,注意同角三角函数的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=log2(x+$\frac{1}{4x-4}$).
(1)求函数f(x)的定义域;
(2)求函数f(x)的最小值及此时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.不等式x2-4<0的解集是(  )
A.{x|x<±2}B.{x|x>±2}C.{x|x<-2或x>2}D.{x|-2<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点为F1,F2,P为椭圆上任意一点.
(1)当a=2,b=$\sqrt{3}$时,
①cos∠F1PF2的最小值是$\frac{1}{2}$;
②|PF1|•|PF2|的取值范围是[3,4];
③$|{\overrightarrow{P{F}_{1}}}^{2}|$+$|{\overrightarrow{P{F}_{2}}}^{2}|$的最小值是8.
(2)若满足|PF1|=2|PF2|,且∠F1PF2=$\frac{π}{3}$时,椭圆的离心率是$\frac{\sqrt{3}}{3}$;
(3)若满足|PF1|=2|PF2|时,椭圆离心率的取值范围是[$\frac{1}{3}$,1);
(4)若满足$\overrightarrow{P{F}_{1}}$$•\overrightarrow{P{F}_{2}}$=0时,椭圆的离心率的取值范围是[$\frac{\sqrt{2}}{2}$,1).
(5)过F2且垂直于x轴的直线与椭圆交于A,B两点,若△ABF1是锐角三角形,则椭圆的离心率的取值范围是($\sqrt{2}$-1,1);
(6)A,B是椭圆左、右顶点,M,N是椭圆上关于x轴对称的两点,直线AM,BN的斜率分别为k1,k2(k1k2≠0)时,若|k1|+|k2|的最小值为1,则椭圆离心率是$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设a=0.50.1,b=log40.1,c=0.40.1,则(  )
A.a>c>bB.b>c>aC.b>a>cD.c>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.$\frac{{2{{sin}^2}55°-1}}{sin20°}$的值为(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知若0$<α<\frac{π}{2}$,-$\frac{π}{2}$<β<0,cos($\frac{π}{4}$+α)=$\frac{1}{3}$,cos($\frac{π}{4}$-$\frac{β}{2}$)=$\frac{\sqrt{3}}{3}$
求(1)求cosα的值;
(2)求$cos({α+\frac{β}{2}})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=ax3+x+1的图象在点(1,f(1))的切线过点(2,7),则a的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.判断下列各对直线的位置关系,如果相交,求出交点坐标:
(1)l1:2x-y+7=0,l2:x+y=1;
(2)${l_1}:x-3y-10=0,\;\;{l_2}:y=\frac{x+5}{3}$.

查看答案和解析>>

同步练习册答案