СÃ÷ÏÂѧÆÚ¾ÍÒªÉÏ´óѧÁË£¬ËûÁ˽⵽´óѧÉú¶¼ÒªÍ¨¹ýCET4£¨¹ú¼ÒÓ¢ÓïËļ¶£©¿¼ÊÔ£¬ÐèÒª´Ê»ãÁ¿ÔÚ¸ßÖеĻù´¡ÉÏ£¬ÔÙÔö¼Ó´óÔ¼1100¸ö£®Ëû×¼±¸´ÓÐÂѧÆÚ¿ªÊ¼£¬ÀûÓÃһѧÆÚ£¨ÒÔ20Öܼƣ©Íê³É´Ê»ãÁ¿µÄÒªÇó£¬ÔçÈÕͨ¹ýCET4¿¼ÊÔ£®Éè¼ÆÁË2Ì×·½°¸£º
·½°¸Ò»£ºµÚÒ»Öܱ³50¸öµ¥´Ê£¬ÒÔºóÿÖܶ¼±ÈÉÏÒ»Öܶ౳2¸ö£¬Ö±µ½È«²¿µ¥´Ê±³Íꣻ
·½°¸¶þ£ºÃ¿Öܱ³Í¬ÑùÊýÁ¿µÄµ¥´Ê£¬ÔÚͬһÖÜÄÚ£¬ÐÇÆÚÒ»±³2¸öµ¥´Ê£¬ÐÇÆÚ¶þ±³µÄÊÇÐÇÆÚÒ»µÄ2±¶£¬Í¬ÑùµÄ¹æÂÉÒ»Ö±±³µ½ÐÇÆÚÎ壬ÖÜÄ©Á½ÌìÐÝÏ¢£®ÊÔÎÊ£º
£¨¢ñ£©°´ÕÕ·½°¸Ò»£¬µÚ10ÖÜÒª±³¶àÉÙ¸öµ¥´Ê£¿
£¨¢ò£©Èç¹ûÏë½Ï¿ì±³Íêµ¥´Ê£¬Çë˵Ã÷Ñ¡ÔñÄÄÒ»ÖÖ·½°¸±È½ÏºÏÊÊ£¿
¿¼µã£ºÊýÁеÄÓ¦ÓÃ
רÌ⣺ӦÓÃÌâ,µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ
·ÖÎö£º£¨¢ñ£©¸ù¾ÝÌâÒ⣬·½°¸Ò»Ã¿ÖÜËù±³µÄµ¥´Ê³ÉµÈ²îÊýÁÐ{an}£¬´Ó¶øÇóµÚ10Ïî¼´¿É£»
£¨¢ò£©·½°¸Ò»³ÉµÈ²îÊýÁУ¬¼ÆËãµÃS16=1040£¬S17=1122£»·½°¸¶þ³ÉµÈ±ÈÊýÁдӶøÇóµÃT17=1054£¬T18=1116£»´Ó¶øÇó½â£®
½â´ð£º ½â£º£¨¢ñ£©¸ù¾ÝÌâÒ⣬
·½°¸Ò»Ã¿ÖÜËù±³µÄµ¥´Ê³ÉµÈ²îÊýÁÐ{an}£¬
ÆäÖÐa1=50£¬d=2£¬
Ôòa10=a1+£¨10-1£©d=50+£¨10-1£©¡Á2=68£¬
´Ó¶ø£¬°´ÕÕ·½°¸Ò»£¬µÚ10ÖÜÒª±³68¸öµ¥´Ê£®
£¨¢ò£©ÒòΪÔڵȲîÊýÁÐ{an}ÖУ¬d=2£¾0£¬´Ó¶øÊýÁÐ{an}Êǵ¥µ÷µÝÔöÊýÁУ¬
ÉèÇ°nÏîºÍΪSn£¬¼ÆËãµÃS16=1040£¬S17=1122£»
°´ÕÕ·½°¸¶þ£¬Ã¿ÖÜ´ÓÐÇÆÚÒ»µ½ÐÇÆÚÎå±³Ëеĵ¥´Ê³ÉµÈ±ÈÊýÁÐ{bn}£¬
ÆäÖÐb1=2£¬q=2£¬Ã¿Öܱ³Ëеĵ¥´ÊΪ2+4+8+16+32=62£¬
Ôòµ½µÚnÖܱ³Ëеĵ¥´ÊÁ¿Tn=62n£¬¼ÆËãµÃT17=1054£¬T18=1116£»
ËùÒÔ£¬Ïë½Ï¿ì±³Íêµ¥´Ê£¬Ñ¡Ôñ·½°¸Ò»±È½ÏºÏÊÊ£®
µãÆÀ£º±¾Ì⿼²éÁËÊýÁÐÔÚʵ¼ÊÎÊÌâÖеÄÓ¦Óã¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýy=2cosxÓëy=2sin£¨2x+¦Õ£©£¨0¡Ü¦Õ£¼¦Ð£©£¬ËüÃǵÄͼÏóÓÐÒ»¸öºá×ø±êΪ
¦Ð
3
µÄ½»µã£¬Ôò¦ÕµÄÖµÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¼¯ºÏA={x|
x
x-1
¡Ü0}£¬B={y|y=ln£¨x-1£©}£¬ÔòA¡ÉBµÈÓÚ£¨¡¡¡¡£©
A¡¢[0£¬1£©B¡¢∅
C¡¢£¨0£¬1£©D¡¢[0£¬1]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª£¬sin
a
2
-cos
a
2
=
1
3
£®Çótan2a£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=alnx+x2£®
£¨1£©Èôa=-1£¬ÇóÖ¤£ºµ±x£¾1ʱ£¬f£¨x£©£¼
2
3
x3+
1
3
£»
£¨2£©Èô¶ÔÈÎÒâµÄx¡Ê[1£¬e]£¬Ê¹µÃf£¨x£©£¾£¨a+2£©xºã³ÉÁ¢£¬Çó³öaµÄ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÃüÌ⣺p£ºÔÚ¡÷ABCÖУ¬sinA£¾sinBµÄ³ä·Ö²»±ØÒªÌõ¼þÊÇA£¾B£»q£º?x¡ÊR£¬x2+2x+2¡Ü0£®ÔòÏÂÁÐÃüÌâΪÕæÃüÌâµÄÊÇ£¨¡¡¡¡£©
A¡¢p¡ÄqB¡¢©Vp¡Äq
C¡¢©Vp¡ÅqD¡¢p¡Åq

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

É躯Êýf£¨x£©=x2-£¨a-2£©x-alnx£¬Èôf£¨x£©ÔÚ[1£¬2]ÉϵÄ×îСֵΪ1£¬ÇóʵÊýaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªx£¬y£¬zÊÇʵÊý£¬x+2y+3z=1£¬Ôòx2+2y2+3z2µÄ×îСֵΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=
x+2
+k£¬kΪÒÑÖªµÄʵÊý£¬
£¨1£©Çóº¯Êýf£¨x£©µÄÖµÓò£»²¢ÅжÏÆäÔÚ¶¨ÒåÓòÉϵĵ¥µ÷ÐÔ£¨²»±ØÖ¤Ã÷£©£»
£¨2£©µ±k=-2ʱ£¬Éèf£¨x£©¡Ü0µÄ½â¼¯ÎªA£¬º¯Êýg£¨x£©=lg£¨sin2
¦Ð
6
x-3sin
¦Ð
6
x•cos
¦Ð
6
x+acos2
¦Ð
6
x£©µÄ¶¨ÒåÓòΪB£¬Èô£¨A¡ÈB£©⊆B£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®
£¨3£©Èô´æÔÚʵÊýa£¬b¡Ý-2ÇÒa£¼b£¬Ê¹f£¨x£©ÔÚ[a£¬b]ÉϵÄÖµÓòΪ[2a£¬2b]£¬ÇóʵÊýkµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸