精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,以为极点, 轴的正半轴为极轴建立极坐标系,直线的参数方程为,曲线的极坐标方程为.

(1)写出直线的直角坐标方程和曲线的普通方程;

(2)求直线与曲线的交点的直角坐标.

【答案】(1)直线的直角坐标方程为;∵曲线的普通方程为.

(2) .

【解析】试题分析:(1)直线的参数方程消去参数能求出直角坐标方程;曲线的极坐标方程化为,利用 能求出曲线的普通方程;(2)曲线的直角坐标方程为,与直线联立方程组,由此能求出直线与曲线的交点的直角坐标.

试题解析:(1)∵直线的参数方程为,∴,代入

,即.

∴直线的直角坐标方程为

∵曲线的极坐标方程为,∴,∴.

.

(2)曲线的直角坐标方程为

,解得.

∴直线与曲线的交点的直角坐标为 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,若对任意的a∈(﹣3,+∞),关于x的方程f(x)=kx都有3个不同的根,则k等于(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我市某矿山企业生产某产品的年固定成本为万元,每生产千件该产品需另投入万元,设该企业年内共生产此种产品千件,并且全部销售完,每千件的销售收入为万元,且

(Ⅰ)写出年利润(万元)关于产品年产量(千件)的函数关系式;

(Ⅱ)问:年产量为多少千件时,该企业生产此产品所获年利润最大?

注:年利润=年销售收入-年总成本.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中, 平面 分别为的中点, 是边长为2 的正三角形, .

(1)证明: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解小学生的体能情况,抽取了某校一个年级的部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),已知图中从左到右前三个小组的频率分别为 0.1,0.3,0.4,第一小组的频数为 5.

(1)求第四小组的频率;
(2)若次数在 75 次以上(含75 次)为达标,试估计该年级学生跳绳测试的达标率.
(3)在这次测试中,一分钟跳绳次数的中位数落在哪个小组内?试求出中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将正方形ABCD沿对角线BD折成直二面角A﹣BD﹣C,有如下四个结论:
①AC⊥BD;
②△ACD是等边三角形;
③AB与平面BCD成60°的角;
④AB与CD所成的角为60°;
其中正确结论是(写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以为极点, 轴的正半轴为极轴建立极坐标系,直线的参数方程为,曲线的极坐标方程为.

(1)写出直线的直角坐标方程和曲线的普通方程;

(2)求直线与曲线的交点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b为正实数,且 ,若a+b﹣c≥0对于满足条件的a,b恒成立,则c的取值范围为( )
A.
B.(﹣∞,3]
C.(﹣∞,6]
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某重点高中拟把学校打造成新型示范高中,为此制定了学生“七不准”,“一日三省十问”等新的规章制度.新规章制度实施一段时间后,学校就新规章制度随机抽取部分学生进行问卷调查,调查卷共有10个问题,每个问题10分,调查结束后,按分数分成5组:[50,60),60,70),[70,80),[80,90),[90,100],并作出频率分布直方图与样本分数的茎叶图(图中仅列出了得分在[50,60),[90,100]的数据).

(1)求样本容量n和频率分布直方图中的x、y的值;
(2)在选取的样本中,从分数在70分以下的学生中随机抽取2名学生进行座谈会,求所抽取的2名学生中恰有一人得分在[50,60)内的概率.

5
6
7
8
9

3 4
1 2 3 4 5 6 7 8

查看答案和解析>>

同步练习册答案